A. Steps in determining the Tension Steel Area As of a T-Beam with given Mu
I. Assume that the entire flange is in compression and solve for Mul:
Compression force in concrete

$$
\mathrm{C}=0.85 \mathrm{fc}^{\prime} \mathrm{b}_{\mathrm{f}} \mathrm{t}
$$

Mul $=\phi$ C(d-t/2)
$\mathrm{Mu} 1=\phi 0.85 \mathrm{fc}^{\prime} \mathrm{b}_{\mathrm{f}} \mathrm{t}(\mathrm{d}-\mathrm{t} / 2$
Mul $=$ \qquad
If $\mathrm{Mu} 1>\mathrm{Mu}$, then $\mathrm{a}<\mathrm{t}$, proceed to Step II If $\mathrm{Mu} 1<\mathrm{Mu}$, then $\mathrm{a}>\mathrm{t}$, proceed to Step III
I. $\mathrm{a}<\mathrm{t}$

Solve for a:

$$
\mathrm{T}=\mathrm{C}
$$

$$
\begin{aligned}
& \mathrm{Mu}=\phi \mathrm{C}(\mathrm{~d}-\mathrm{a} / 2) \\
& \mathrm{Mu}=\phi 0.85 \mathrm{fc} \mathrm{cb}(\mathrm{~d}-\mathrm{a} / 2) \\
& \mathrm{a}= \\
&=\mathrm{C} \\
& \text { As fy }=0.85 \mathrm{fc}^{\prime} \mathrm{ab} \\
& \text { As }=
\end{aligned}
$$

$$
\text { As }=
$$

Solve for $\rho_{\text {max }}$ and compare with $\frac{\mathrm{As}}{\mathrm{b}_{\mathrm{f}} \mathrm{d}}$

$$
\text { If } \frac{A s}{b_{f} d}<\rho_{\max } \text {, design is OK! }
$$

If $\frac{A s}{b_{f} d}>\rho_{\max }$, beam needs compression steel (seldom happen)

Solve fo $\rho_{\text {min }}=1.4 /$ fy and compare with $\frac{A s}{D_{w} d}$

$$
\text { If } \frac{A s}{\mathrm{D}_{\mathrm{w}} d}>\rho_{\text {min }}, \text { design is } \mathrm{OK!}
$$

If $\frac{A s}{b_{w} d}<\rho_{\min }$, use $\rho=\rho_{\min }$ (seldom)
III. $a>t$

$\mathrm{Mu}=\mathrm{Mu} 1+\mathrm{Mu} 2$
Mu1 = the same value in Step 1
$\mathrm{Muz}=\mathrm{Mu}-\mathrm{Mu} 1$
Mu2 $=\phi \quad C_{2}\left(d^{\prime}-a / 2\right)$
Mu2 $=\phi 0.85 \mathrm{fc}^{\prime} \mathrm{b}_{\mathrm{w}} z\left(\mathrm{~d}^{\prime}-\mathrm{z} / 2\right)$
$\mathrm{z}=$ \qquad
$\mathrm{T}=\mathrm{C}$
As fy $=\mathrm{C} 1+\mathrm{C} 2$
As fy $=0.85 \mathrm{fc}^{\prime} \mathrm{b} t+0.85 \mathrm{fc}^{\prime} \mathrm{b}_{\mathrm{w}} z$ As $=$ \qquad
Solve fo $\rho_{\text {min }}=1.4 /$ fy and compare with $\frac{A s}{D_{w} d}$
If $\frac{A s}{b_{w} d}>\rho_{\text {min }}$, design is OK!
If $\frac{A s}{b_{w} d}<\rho_{\text {min }}$, use $\rho=\rho_{\text {mir }}$ (seldom)

$$
A s=\rho_{\min } D_{w} d
$$

Solve for Asmax .

$$
a=\beta_{1} \frac{600 d}{600+f y}
$$

$A s_{\text {max }}=0.75 \mathrm{~A}_{\text {sb }}$
$A s_{\text {max }}=0.75 \frac{0.85 \mathrm{fc}^{\prime}\left(\mathrm{b}_{\mathrm{f}} \mathrm{t}+(\mathrm{a}-\mathrm{t}) \mathrm{b}_{\mathrm{w}}\right.}{\mathrm{fy}}$
If $A s<A s_{\text {max }}$, value is OK
If $A s>A s_{\text {max }}$, the beam needs compression steel (seldom happens)
B. Steps in Determining Mu of a T-Beam with given As.
I. Assume steel yields ($\mathrm{fs}=\mathrm{fy}$) and compute the area of compression concrete, Ac

C = T
$0.85 \mathrm{fc}^{\prime} \mathrm{Ac}=\mathrm{As}$ fy
Area of compression flange, $A f=b_{f} t$
If $A c<A f, a<t$, proceed to Step II
If Ac>Af, a > t, proceed to Step III
II. $a<t$

Solve for a:

$$
A c=b_{f} \times a
$$

$\mathrm{a}=$
$\mathrm{Mu}=\phi$ As fy (d-a/2)
Verify if steel yields(this may not be necessary)
$c=a / \beta_{1} \quad$ fs $=600(d-c) / c$
If $f s>f y$, steel yields (correct assumption)
If fs < fy, steel does not yield (seldom happen)
III. $\mathrm{a}>\mathrm{t}$

Solve for z
$A c=A_{f}+b_{w} z$
(see Steps I for values of Ac and Af)
Verify if steel yields:
$a=t+z=$ \qquad $\mathrm{fs}=600(\mathrm{~d}-\mathrm{c}) / \mathrm{c}=$ \qquad

$$
A c=
$$

If $\mathrm{fs}>\mathrm{fy}$, steel yields (correct assumption) If fs < fy, steel does not yield (seldom happen)

$$
\begin{aligned}
M u 1 & =\phi C_{1}(d-t / 2) \\
M u 1 & =\phi 0.85 \mathrm{fc}^{\prime} A_{f}(\mathrm{~d}-\mathrm{t} / 2) \\
\mathrm{MuZ} & =\phi \mathrm{C}_{2}\left(\mathrm{~d}^{\prime}-\mathrm{z} / 2\right) \\
\mathrm{MuZ} & =\phi 0.85 \mathrm{fc}^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{z}\left(\mathrm{~d}^{\prime}-\mathrm{z} / 2\right) \\
\mathrm{Mu} & =\mathrm{Mu} 1+\mathrm{Muz}
\end{aligned}
$$

ACI/NSCP Coefficients for Continuous

Beams and Slabs

Requirements:

1. Two or more spans
2. Loads are uniformly distributed
3. Beams or slabs are prismatic
4. $\mathrm{L}-\mathrm{S} \leq 20 \% \mathrm{~S}$
5. $\frac{1.7 \mathrm{wll}}{1.4 \mathrm{wd}} \leq 3.0$
1.4 wdl
$\mathrm{w}(\mathrm{kN} / \mathrm{m})$

COLUMNS

Classification of column as to:

A. REINFORCEMENT

1. TIED COLUMNS

Applied Axial Load:
$\mathrm{Pu}=1.4 \mathrm{DL}+1.7 \mathrm{LL}$

Resisting Axial Load:
$\left.P u=\phi 0.80 \mathrm{Ag}\left[0.85 \mathrm{fc}^{\prime}\left(1-\rho_{g}\right)+\rho_{g} \mathrm{fy}\right)\right]$
$\phi=0.70$ for tied column
Note:
To be safe, Pu act. \leq Pu res.
ACI Code specs:

1. $\rho_{g}=0.01-0.08$
2. Minimum side cover $=40 \mathrm{~mm}$
3. Minimum vertical bars

4-16mm dia. - for rec. section
6-16mm dia. - for round section
4. Minimum lateral tie bar dia

10 mm dia.- for $<32 \mathrm{db}$ main bar
12 mm dia- for $>32 \mathrm{db}$ main bar
5. Spacing of lateral ties (use the smallest)
a. 16 vert. bar diameter
b. 48 lateral tie bar diameter
c. least column dimension
6. Minimum side dimension of column $=200 \mathrm{~mm}$
7. Clear distance between longitudinal bars a) 1.5 times bar diameter
b) 1.5 times max. size of coarse aggregate
8. Minimum covering of ties
a) 40 mm for interior columns
b) 50 mm for exterior columns
9. When there are more than four vertical bars, additional ties shall be provided so that every longitudinal bar will be held firmly in position. No bar can be located at a greater distance than 150 mm clear in either side from a laterally supported bar

2. SPIRAL COLUMNS

Applied Axial Load:

$$
\mathrm{Pu}=1.4 \mathrm{DL}+1.7 \mathrm{LL}
$$

Resisting Axial Load:
$\left.\mathrm{Pu}=\phi 0.85 \mathrm{Ag}\left[0.85 \mathrm{fc}^{\prime}\left(1-\rho_{\mathrm{g}}\right)+\rho_{\mathrm{g}} \mathrm{fy}\right)\right]$
$\phi=0.75$ for spiral column
To be safe, Pu act. \leq Pu res.
ACI Code specs:

1. $\rho_{\mathrm{g}}=0.01-0.06$
2. minimum diameter $=250 \mathrm{~mm}$
3. min. vertical bars $=6-16 \mathrm{~mm}$
4. clear distance between vertical bars
a) 1.5 times bar diameter
b) 1.5 times max. size of coarse aggregate 6. spacing of spirals
a) not more that 75 mm
c) not less than 1.5 times coarse aggregate d) not more than one-sixth
5. Spacing of spiral tie:

$$
s=\frac{4 A_{\mathrm{sp}}}{\rho_{\mathrm{s}} \mathrm{Dc}}
$$

Minimum spiral steel ratio : ρ_{S}

$$
\begin{gathered}
\rho_{\mathrm{s}}=0.45\left[(\mathrm{D} / \mathrm{Dc})^{2}-1\right] \mathrm{fc} / \mathrm{fy} \\
\rho_{\mathrm{s}}=\frac{4 \mathrm{~A}_{\mathrm{sp}}\left(\mathrm{D}_{\mathrm{c}}-\mathrm{d}_{\mathrm{b}}\right)}{\mathrm{s} D_{\mathrm{c}}^{2}}
\end{gathered}
$$

where:
Asp = area of the spiral reinforcement
$\rho_{\mathrm{s}}=$ spiral steel ratio
$\mathrm{Dc}=$ core diameter (mm)

3. COMPOSITE COLUMN

B. SLENDERNES

1. Short Column
$\mathrm{Klu} / \mathrm{r} \leq 34-12 \mathrm{M} 1 / \mathrm{M} 2$
2. Slender Column
$\mathrm{Klu} / \mathrm{r}>34-12 \mathrm{M} 1 / \mathrm{M} 2$

C. SECTION

1. Square/rectangular
2. Round/Circular

D. LOAD

1. Axially Loaded
2. Eccentrically loaded a. Uniaxial bending
b. Biaxial bending

ECCENTRICALLY LOADED COLUMN

A. Compression plus Uniaxial Bending
$\mathrm{e}_{\text {min }}=0.10 \mathrm{~h}$ for rectangular section $\mathrm{e}_{\text {min }}=0.05 \mathrm{D}$ for circular section
where:
$\mathrm{h}=$ column dimension parallel to eccentricity (mm)
$\mathrm{D}=$ column diameter (mm)

Axially Load:
$\left.\mathrm{Pu}=\phi 0.80 \mathrm{Ag}\left[0.85 \mathrm{fc}^{\prime}\left(1-\rho_{g}\right)+\rho_{g} \mathrm{fy}\right)\right]$
$\left.\mathrm{Pu}=\phi 0.85 \mathrm{Ag}\left[0.85 \mathrm{fc}^{\prime}\left(1-\rho_{\mathrm{g}}\right)+\rho_{\mathrm{g}} \mathrm{fy}\right)\right]$

Axially loaded (Neglect the effect of moment)

$$
\left.\mathrm{Pu}=\phi 0.80 \mathrm{Ag}\left[0.85 f^{\prime}\left(1-\rho_{\mathrm{g}}\right)+\rho_{\mathrm{g}} \mathrm{fy}\right)\right]
$$

$$
\left.\mathrm{Pu}=\phi 0.85 \mathrm{Ag}\left[0.85 \mathrm{fc}^{\prime}\left(1-\rho_{\mathrm{g}}\right)+\rho_{\mathrm{g}} \mathrm{fy}\right)\right]
$$

3. $\mathrm{e}_{\min }<\mathrm{e}<\mathrm{e}_{\mathrm{b}}$

Eccentrically loaded Consider effect of moment Failure by crushing of concrete

$$
\begin{aligned}
& \text { fs' = fy } \\
& \text { fs < fy }
\end{aligned}
$$

4. $e=e_{b}$

Eccentrically loaded Consider effect of moment

$$
\mathrm{fs}^{\prime}=\mathrm{fy}
$$

$$
\text { fs }=\mathrm{fy}
$$

5. $e_{b}<e$
Consider effect of moment Failure initiated by yielding of tension steel

$$
\text { fs }=\mathrm{fy}
$$

6. $e_{b} \lll e$

Compression plus Uniaxial Bending

Gross Steel Ratio:

$$
\begin{aligned}
& \rho_{\mathrm{g}}=(\mathrm{As}+\mathrm{As}) / \mathrm{Ag} \\
& \mathrm{Ag}=\mathrm{bh} \\
& \mathrm{Mn}=\mathrm{Pn}(\mathrm{e}) \\
& \mathrm{Mu}=\phi \mathrm{Mn}
\end{aligned}
$$

$\mathrm{Mn}=$ nominal moment

$\mathrm{Mu}=$ ultimate moment

SHORT ECCENTRICALLY LOADED

 ROUND COLUMNSColumn Interaction Eqtn: (Homogenous Mat'l.)

$$
\frac{\mathrm{fa}}{\mathrm{Fa}}+\frac{\mathrm{fbx}}{\mathrm{Fbx}}+\frac{\mathrm{fby}}{\mathrm{Fby}} \leq 1.0
$$

Bresler's Eqtn: (Reinf. Conc.-Composite Mat'l.)

$$
\frac{P n}{P n x}+\frac{P n}{P n y}+\frac{P n}{P n o} \leq 1.0
$$

where:
Pn - nominal load cap.of column at Pn - nominal lo Pno- nominal load cap.of column at
$e=0$ Pnx - nominal load cap. of

$$
\mathrm{e}_{\mathrm{y}} \text { and } \mathrm{e}_{\mathrm{x}}
$$

Pny - nominal load cap.of column at
e \& e =0

SLENDER COLUMNS

A. Columns braced against sidesway

1. When $\mathrm{Klu} / \mathrm{r} \leq 34-12 \mathrm{M}_{1} / \mathrm{M}_{2}$, column is short. 2. When Klu/r > 34-12 M_{1} / M_{2}, column is slender.
B. Unbraced Columns
2. When $\mathrm{Klu} / \mathrm{r} \leq 22$, column is short.
3. When Klu/r > 22, column is slender.

Effective length factor, k
Condition
th end
fixed at both ends
pinned at the other
fixed at one end, free at the other
$k 1.0$ for braced frames, no sidesway
$\mathrm{k}>1.0$ for unbraced frames, with sideswa
$\mathrm{k}=1.0$ for compression members in frames braced again sidesway unless a theoretical analysis shows that a lesser value can be used.
For slender columns (to consider P Δ - effec
or secondary moment)

1. When $\operatorname{Mu}(A) \leq \operatorname{Pu}(15+0.03 \mathrm{~h})$, use $\mathrm{Mu}=\mathrm{Pu}(15+0.03 \mathrm{~h})$
2. When $\operatorname{Mu}(A)>\operatorname{Pu}(15+0.03 \mathrm{~h})$, use $\mathrm{Mu}=\mathrm{Mu}(\mathrm{A})$

ACI Moment Magnifier Method
Factored Design Moment:

\[

\]

$\delta=$ moment magnification factor

Moment Magnifiers

$\delta_{\mathrm{b}}=\frac{\mathrm{Cm}}{1-\frac{\mathrm{Pu}}{\phi \mathrm{Pc}}} \geq 1.0$
$\delta_{\mathrm{s}}=\frac{\mathrm{Cm}}{1-\frac{\sum \mathrm{Pu}}{\phi \sum \mathrm{Pc}}} \geq 1.0$

$\mathrm{Cm}=0.60+0.40 \mathrm{M}_{1} / \mathrm{M}_{2} \geq 0.40$

(for braced without transversed loads)
$\mathrm{Cm}=1.0$ (for all other cases)
$M_{1} / M_{2}=$ smaller end momen bigger end momen
where: = + for single curvature
= - for double curvature

$$
\mathrm{Pc}=\frac{\pi^{2} \mathrm{El}}{(\mathrm{KIU})^{2}} \mathrm{El}=\frac{\mathrm{Ec} \lg / 2.5}{1+\beta \mathrm{d}}
$$

where:
$\mathrm{Ec}=4700 \sqrt{\mathrm{fc}^{\prime}} \quad(\mathrm{MPa})$
$\mathrm{lg}=\mathrm{bh}^{3} / 12$
$\beta \mathrm{d}=\frac{\text { factored axial dead load }}{}$
factored axial total load
$\mathrm{Klu} / \mathrm{r}=$ slenderness ratio
$r=0.30 h$ for rectangular
$=0.25 \mathrm{D}$ for round column
$\mathrm{Pu}=\mathrm{PdI}+\mathrm{PlI}$

FOOTINGS

Types of Footing

1. Spread Footing (Isolated Footing)
2. Wall Footing
3. Combined Footing
4. Mat and Raft Foundation
5. Footing on Piles

SPREAD FOOTING

Modes of failure:

1. Bearing of soil
2. Bending or Flexure
3. One-way Shear or Beam Shear
4. Two-way Shear of Punching Shear

SPREAD FOOTING (ISOLATED FOOTING)

A. BEARING ON SOIL

$$
q=P / A f
$$

To be safe, $q \leq q$ all
where:
$\mathrm{q}=$ bearing stress on soil (MPa)
q all $=$ allow. bearing stress on soil (MPa)
P = column load

Af $=$ area of soil in contact with bearing stress of soil (mm^{2})
B. BENDING OR FLEXURE

Applied Moment:

$$
M u=q u\left(L x^{2}\right) / 2
$$

$$
\begin{aligned}
& \text { Resisting Moment of steel: } \\
& \qquad \mathrm{Mu}=\phi \text { As fs (d-a/2) } \\
& \text { Resisting Moment of Concrete: } \\
& \mathrm{Mu}=\phi \rho{\text { fy } \mathrm{bd}^{2}\left[1-0.59 \rho \mathrm{fy} / \mathrm{fc}^{\prime}\right]}^{\text {}} \mathrm{L}
\end{aligned}
$$

To be safe, Mu act \leq Mu resist.
C. ONE -WAY OR BEAM SHEAR

Applied Ultimate Shear:

$$
\mathrm{Vu} \text { act }=\mathrm{qu}(\mathrm{~Hz})
$$

Vu act - critical shear force d" from the face of support

Resisting Ultimate Shear Force of concrete

$$
\phi \mathrm{Vc}=\phi 1 / 6 \sqrt{\mathrm{fc}} \mathrm{bd}
$$

where:
$\phi=$ capacity or strength reduction factor
0.85 for shear and torsion
$\mathrm{Vc}=$ nominal shear force capacity of concrete
b,d = beam dimensions (mm)
D. TWO -WAY OR PUNCHING SHEAR

Applied Punching Shear Force:

$$
\mathrm{V}_{\mathrm{p}}=\mathrm{qu}\left[\mathrm{~L}^{2}-(\mathrm{c}+\mathrm{d})^{2}\right]
$$

Resisting Shear force of Concrete:

$$
\mathrm{V}_{\mathrm{p}}=\mathrm{v}_{\mathrm{pc}}(\mathrm{Ap})
$$

Resisting Shear stress of Concrete in Punching:

$$
\mathrm{v}_{\mathrm{pc}}=\phi\left[1+2 / \beta_{\mathrm{c}}\right] 1 / 6 \sqrt{\mathrm{fc}} \leq \phi 1 / 3 \sqrt{\mathrm{fc}}
$$

$$
\text { To be safe, } \mathrm{V}_{\mathrm{p}} \leq \mathrm{v}_{\mathrm{pc}}
$$

where:
$\mathrm{L}=$ side dimension of footing (m)
$\mathrm{c}=$ column dimension (mm)
$\mathrm{qu}=$ net upward soil bearing stress or pressure (MPa)

$$
\mathrm{qu}=\frac{1.4 \mathrm{P}_{\mathrm{DL}}+1.7 \mathrm{PLL}^{A f}}{\mathrm{Af}}
$$

$A p=4(c+d) d$

CHECK DEVELOPMENT LENGTH

DEVELOPMENT LENGTHS

A. STEEL IN TENSION

$$
\mathrm{Ld}=\frac{0.02 \mathrm{~A}_{\mathrm{b}} \mathrm{fy}}{\sqrt{\mathrm{fc}^{\prime}}}
$$

Minimum Ld $=0.06 \mathrm{~d}_{\mathrm{b}} \mathrm{fy}$ or 300 mm

For top bars:
Ld is multiplied by a factor 1.4
For $35 \mathrm{~mm} \varnothing$ and smaller bars

$$
\mathrm{Ld}=\frac{0.02 \mathrm{~A}_{\mathrm{b}} \mathrm{fy}}{\sqrt{\mathrm{fc}^{\prime}}}
$$

Minimum Ld $=300 \mathrm{~mm}$
For 45 mm b bars

$$
\mathrm{Ld}=\frac{25 \mathrm{~A}_{\mathrm{b}} \mathrm{fy}}{\sqrt{\mathrm{fc}^{\prime}}}
$$

$$
\text { Minimum Ld = } 300 \mathrm{~mm}
$$

For $55 \mathrm{~mm} \varnothing$ bars

$$
\mathrm{Ld}=\frac{40 \mathrm{fy}}{\sqrt{\mathrm{fc}}}
$$

Minimum Ld $=300 \mathrm{~mm}$
B. STEEL IN COMPRESSION

$$
\mathrm{Ld}=\frac{0.02 \mathrm{~A}_{\mathrm{b}} \mathrm{fy}}{\sqrt{\mathrm{fc}^{\prime}}}
$$

Minimum Ld $=0.04 d_{\mathrm{b} f y}$ or 300 mm

