REINFORCED CONCRETE DESIGN FORMULAS AND PRINCIPLES BY: NTDEGUMA

- A. Steps in determining the Tension Steel Area As of a T-Beam with given Mu
- I. Assume that the entire flange is in compression and solve for Mu1:

Compression force in concrete:

$$C = 0.85 \text{ fc}' \text{ b}_{f} \text{ t}$$

$$Mu1 = \phi C(d - t/2)$$

$$Mu1 = \phi 0.85 \text{ fc' } b_f t(d - t/2)$$

If Mu1 > Mu, then a < t, proceed to Step II

If Mu1 < Mu, then a > t, proceed to Step III

Solve for a:

$$Mu = \phi C (d-a/2)$$

$$Mu = 0.85 \text{ fc}' \text{ ab (d-a/2)}$$

T = C

As fy =
$$0.85$$
 fc' ab

As = _____

Solve for ρ_{max} and compare with $\frac{As}{b_f d}$

If
$$\frac{As}{b_f d}$$
 < ρ_{max} , design is OK!

If $\frac{As}{b_f d} > \rho_{max}$, beam needs compression steel (seldom happen)

Solve fo $\rho_{min} = 1.4 / \text{ fy and compare with } \frac{As}{b_w d}$

If
$$\frac{As}{b_{min}} > \rho_{min}$$
, design is OK!

If
$$\frac{As}{b_w d}$$
 < ρ_{min} , use $\rho = \rho_{min}$ (seldom)

As =
$$\rho_{min} b_w d$$

III. a > t

$$Mu = Mu1 + Mu2$$

$$Mu1 =$$
the same value in Step 1

$$Mu2 = Mu - Mu1$$

$$Mu2 = \phi C_2 (d'-a/2)$$

$$Mu2 = \phi 0.85 \text{ fc' } b_w z (d'-z/2)$$

T = C

As
$$fy = C1 + C2$$

As fy =
$$0.85$$
 fc' b t + 0.85 fc' $b_w z$

Solve fo $\rho_{min} = 1.4 / \text{ fy and compare with } \frac{As}{b_w d}$

If
$$\frac{As}{b_w d} > \rho_{min}$$
, design is OK!

If
$$\frac{As}{b_{wd}} < \rho_{min}$$
, use $\rho = \rho_{min}(seldom)$

$$A_S = \rho_{min} \ b_w \ d$$

Solve for Asmax.

$$a = \beta_1 \frac{600 \text{ d}}{600 + \text{fy}}$$

$$As_{max} = 0.75 A_{sb}$$

$$As_{max} = 0.75 \frac{0.85 \text{ fc' (} b_{f} \text{ t + (a-t)} b_{w}}{\text{fy}}$$

If As < As_{max}, value is OK

If As > As_{max}, the beam needs compression steel (seldom happens)

- B. Steps in Determining Mu of a T-Beam with given As.
- I. Assume steel yields (fs = fy) and compute the area of compression concrete, Ac

$$C = T$$

0.85 fc' $Ac = As fy$
 $Ac =$

Area of compression flange, Af = b_f t If Ac < Af, a < t, proceed to Step II If Ac > Af, a > t, proceed to Step III

Solve for a:

$$Ac = b_f x a$$

$$Mu = \phi \text{ As fy (d-a/2)}$$

Verify if steel yields(this may not be necessary)

$$c = a / \beta_1$$
 fs = 600 (d-c) / c

If fs > fy, steel yields (correct assumption)

If fs < fy, steel does not yield (seldom happen)

III.a>t

Solve for z:

$$Ac = A_f + b_w z$$

(see Steps I for values of Ac and Af)

Verify if steel yields:

$$c = a / \beta_1 =$$
_____ fs = 600(d-c)/c = _____

If fs > fy, steel yields (correct assumption)

If fs < fy, steel does not yield (seldom happen)

$$Mu1 = \phi C_1 (d - t / 2)$$

$$Mu1 = \phi 0.85 \text{ fc' } A_f (d - t / 2)$$

$$Mu2 = \phi C_2(d' - z / 2)$$

$$Mu2 = \phi 0.85 \text{ fc' } b_w z (d' - z / 2)$$

$$Mu = Mu1 + Mu2$$

ACI/NSCP Coefficients for Continuous

Beams and Slabs

Requirements:

- 1. Two or more spans
- 2. Loads are uniformly distributed
- 3. Beams or slabs are prismatic
- 4. L S < 20%S
- $5. \frac{1.7 \text{ wll}}{1.4 \text{ wdl}} \le 3.0$

w (kN/m)

Note:

L = the average span between adjacent spans in shear and negative moment

COLUMNS

Classification of column as to:

A. REINFORCEMENT

1. TIED COLUMNS

Applied Axial Load:

Pu = 1.4 DL + 1.7 LL

Resisting Axial Load:

Pu = ϕ 0.80 Ag [0.85fc'(1- ρ_a)+ ρ_a fy)]

 ϕ = 0.70 for tied column

Note:

To be safe, Pu act. \leq Pu res.

 ρ_g = gross steel area = As/Ag

ACI Code specs:

As = total steel area

db = bar diameter

- 1. $\rho_q = 0.01 0.08$
- 2. Minimum side cover = 40 mm
- 3. Minimum vertical bars
- 4 16mm dia. for rec. section
- 6 16mm dia. for round section
- 4. Minimum lateral tie bar dia.
- 10mm dia.- for ≤ 32 db main bar

12mm dia.- for > 32 db main bar

- 5. Spacing of lateral ties (use the smallest)
- a. 16 vert. bar diameter
- b. 48 lateral tie bar diameter
- c. least column dimension
- c. least column dimension6. Minimum side dimension of
- column = 200 mm
- 7. Clear distance between longitudinal bars
- a) 1.5 times bar diameter
- b) 1.5 times max. size of coarse aggregate
- 8. Minimum covering of ties
 - a) 40 mm for interior columns
 - b) 50 mm for exterior columns
 - c) 1.5 times max. size of coarse aggregate
- When there are more than four vertical bars, additional ties shall be provided so that every longitudinal bar will be held firmly in position. No bar can be located at a greater distance than 150 mm clear in either side from a laterally supported bar.

2. SPIRAL COLUMNS

Applied Axial Load:

Pu = 1.4 DL + 1.7 LL

Resisting Axial Load:

Pu = ϕ 0.85 Ag [0.85fc'(1- ρ_a)+ ρ_a fy)]

 ϕ = 0.75 for spiral column

To be safe, Pu act. < Pu res.

ACI Code specs:

- 1. $\rho_{q} = 0.01 0.06$
- 2. minimum diameter = 250 mm
- 3. min. vertical bars = 6-16 mm
- 4. minimum spiral = 10 mm
- 5. clear distance between vertical bars
 - a) 1.5 times bar diameter
- b) 1.5 times max. size of coarse aggregate
- 6. spacing of spirals
 - a) not more that 75 mm
 - b)not less than 25 mm
 - c) not less than 1.5 times coarse aggregate
 - d) not more than one-sixth
- 7. Spacing of spiral tie:

$$s = \frac{4A_{sp}}{\rho_{s}Dc}$$

Minimum spiral steel ratio

$$\rho_{s} = \frac{4 A_{sp}(D_{c} - d_{b})}{s D_{c}^{2}}$$

where:

Asp = area of the spiral reinforcement

 $\rho_{\rm S}$ = spiral steel ratio

Dc = core diameter (mm)

3. COMPOSITE COLUMN

B. SLENDERNESS

- 1. Short Column
- Klu/r < 34 12 M1/M2
- , -
- 2. Slender Column
- Klu/r > 34 12 M1/M2

C. SECTION

- 1. Square/rectangular
- 2. Round/Circular

D. LOAD

- 1. Axially Loaded
- 2. Eccentrically loaded
 - a. Uniaxial bending
 - b. Biaxial bending

ECCENTRICALLY LOADED COLUMN

A. Compression plus Uniaxial Bending

 e_{min} = 0.10 h for rectangular section e_{min} = 0.05 D for circular section

where:

h = column dimension parallel to eccentricity (mm)

D = column diameter (mm)

1. e = 0

Axially Load:

Pu = ϕ 0.80 Ag [0.85fc'(1- ρ_g)+ ρ_g fy)]

Pu = ϕ 0.85 Ag [0.85fc'(1- ρ_q)+ ρ_q fy)]

Axially loaded (Neglect the effect of moment)

Pu =
$$\phi$$
 0.80 Ag [0.85fc'(1- ρ_g)+ ρ_g fy)]

Pu =
$$\phi$$
 0.85 Ag [0.85fc'(1- ρ_g)+ ρ_g fy)]

3. $e_{min} < e < e_{h}$

Eccentrically loaded Consider effect of moment

Failure by crushing of concrete

$$fs' = fy$$

 $fs < fy$

4. $e = e_h$

5. e_b < e

Eccentrically loaded Consider effect of moment

Failure initiated by yielding of tension steel

$$fs = fy$$

6. e_b <<< e

Compression plus Uniaxial Bending:

Gross Steel Ratio:

$$\rho_g$$
 = (As + As') / Ag
Ag = bh
Mn = Pn (e)
Mu = ϕ Mn

Mn = nominal moment Mu = ultimate moment

SHORT ECCENTRICALLY LOADED **ROUND COLUMNS**

Column Interaction Eqtn: (Homogenous Mat'l.)

$$\frac{fa}{Fa} + \frac{fbx}{Fbx} + \frac{fby}{Fby} \le 1.0$$

Bresler's Egtn: (Reinf. Conc.-Composite Mat'l.)

$$\frac{Pn}{Pnx} + \frac{Pn}{Pnv} + \frac{Pn}{Pno} \le 1.0$$

REINFORCED CONCRETE DESIGN FORMULAS AND PRINCIPLES

SLENDER COLUMNS

- A. Columns braced against sidesway
- 1. When $Klu/r \le 34 12 M_1/M_2$, column is short.
- 2. When $Klu/r > 34 12 M_1/M_2$, column is slender.
- B. Unbraced Columns
- 1. When Klu/r < 22, column is short.
- 2. When Klu/r > 22, column is slender.

Effective length factor, k

Condition	Value of k
pinned at both ends	1.0
fixed at both ends	0.5
fixed at one end, pinned at the other	0.7
fixed at one end, free at the other	2.0
k 1.0 for braced frames, no sidesway	
k > 1.0 for unbraced frames with sidesway	

for unbraced frames, with sidesway

k = 1.0 for compression members in frames braced against sidesway unless a theoretical analysis shows that a lesser value can be used.

For slender columns (to consider $P\Delta$ - effect or secondary moment)

- 1. When $Mu(A) \le Pu(15 + 0.03h)$, use Mu = Pu (15 + 0.03 h)
- 2. When Mu(A) > Pu(15 + 0.03h), use Mu = Mu(A)

ACI Moment Magnifier Method

Factored Design Moment:

$$Mc = \delta_b M_{2b} + \delta_s M_{2s}$$

b = bending

s = sidesway

 δ = moment magnification factor

Moment Magnifiers

$$\delta_{b} = \frac{Cm}{1 - \frac{Pu}{\phi Pc}} \ge 1.0$$

$$\delta_{s} = \frac{Cm}{1 - \frac{\sum Pu}{\Phi \sum Pc}} \geq 1.0$$

$$Cm = 0.60 + 0.40 M_1/M_2 > 0.40$$

(for braced without transversed loads)

Cm = 1.0 (for all other cases)

 M_1/M_2 = smaller end moment bigger end moment

where: = + for single curvature

= - for double curvature

$$Pc = \frac{\pi^2 EI}{(Klu)^2}$$
 $EI = \frac{Ec \lg / 2.5}{1 + \beta d}$

Ec = $4700\sqrt{fc'}$ (MPa) lg = $bh^3/12$

 $\beta d = \frac{\text{factored axial dead load}}{1}$ factored axial total load

Klu/r = slenderness ratio

r = 0.30h for rectangular

= 0.25D for round column

Pu = PdI + PII

FOOTINGS

Types of Footing:

- 1. Spread Footing (Isolated Footing)
- 2. Wall Footing
- 3. Combined Footing
- 4. Mat and Raft Foundation
- 5. Footing on Piles

SPREAD FOOTING

Modes of failure:

- 1. Bearing of soil
- 2. Bending or Flexure
- 3. One-way Shear or Beam Shear
- 4. Two-way Shear of Punching Shear

SPREAD FOOTING (ISOLATED FOOTING)

A. BEARING ON SOIL

$$q = P / Af$$

To be safe, q < q all

where:

q = bearing stress on soil (MPa)

q all = allow. bearing stress on soil (MPa)

P = column load

Af = area of soil in contact with bearing stress of soil (mm²)

B. BENDING OR FLEXURE

Applied Moment:

$$Mu = qu (Lx^2)/2$$

Resisting Moment of steel:

$$Mu = \phi As fs (d-a/2)$$

Resisting Moment of Concrete:

Mu =
$$\phi \rho \text{ fy bd}^2 [1 - 0.59 \rho \text{ fy / fc'}]$$

To be safe, Mu act < Mu resist.

C. ONE -WAY OR BEAM SHEAR

Applied Ultimate Shear:

Vu act - critical shear force 'd" from the face of support

Resisting Ultimate Shear Force of concrete

$$\phi Vc = \phi 1/6 \sqrt{fc'} bd$$

where:

φ = capacity or strength reduction

= 0.85 for shear and torsion

Vc = nominal shear force capacity of concrete

b,d = beam dimensions (mm)

D. TWO -WAY OR PUNCHING SHEAR

Applied Punching Shear Force:

$$V_p = qu [L^2 - (c + d)^2]$$

Resisting Shear force of Concrete:

$$V_p = V_{pc}(Ap)$$

Resisting Shear stress of Concrete in Punching:

$$v_{pc} = \phi [1 + 2 / \beta_c] 1/6 \sqrt{fc'} \le \phi 1/3 \sqrt{fc'}$$

To be safe, $V_p \le v_{pc}$

where:

L = side dimension of footing (m)

c = column dimension (mm)

qu = net upward soil bearing stress or pressure (MPa)

$$qu = \frac{1.4 P_{DL} + 1.7 P_{LL}}{Af}$$

$$Ap = 4 (c + d) d$$

CHECK DEVELOPMENT LENGTH

$$Ld_{reqd} = \frac{0.02 \text{ A}_b \text{ fy}}{\sqrt{\text{fc'}}}$$

DEVELOPMENT LENGTHS

A. STEEL IN TENSION

$$Ld = \frac{0.02 \text{ A}_b \text{ fy}}{\sqrt{\text{fc'}}}$$

Minimum Ld = $0.06 d_b fy$ or 300 mm

For top bars:

Ld is multiplied by a factor 1.4

For 35 mmØ and smaller bars

$$Ld = \frac{0.02 A_b fy}{\sqrt{fc'}}$$

Minimum Ld = 300 mm

For 45 mmØ bars

$$Ld = \frac{25 A_b fy}{\sqrt{fc'}}$$

Minimum Ld = 300 mm

For 55 mmØ bars

$$Ld = \frac{40 \text{ fy}}{\sqrt{\text{fc'}}}$$

Minimum Ld = 300 mm

B. STEEL IN COMPRESSION

$$Ld = \frac{0.02 A_b fy}{\sqrt{fc'}}$$

Minimum Ld = $0.04 d_h fy$ or 300 mm