Index and Classification Properties of Soils

Unit weight: $\gamma = \frac{W}{V}$

Dry unit weight: $\gamma_d = \frac{G_s \gamma_w}{1+e}$

Moist unit weight : $\gamma = \gamma_{dry} (1 + \omega)$

Saturated unit weight: $\gamma_{\text{sat}} = \frac{(Gs + e)\gamma_w}{1 + e}$

Zero air void unit weight:

$$\gamma_{zav} = \frac{Gs\gamma_W}{1+e}$$

Moisture content (water content)

$$\omega = \frac{W_{W}}{W_{S}}$$

Degree of saturation : $s = \frac{\omega G_s}{e}$

Porosity: $n = \frac{e}{1+e}$

Air void ratio = n(1 - s)

where: W = total weight

V = volume

 G_s = specific gravity

e = void ratio

 $\gamma_{\rm w}$ = unit weight of water

= $9.81 \text{ kN/m}^3 (1 \text{gram/cm}^3)$

Phases of Soil

G.W.T. = ground water table

Relative density (Density index)

$$D_{r} = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}} \text{ or}$$

$$D_{r} = \frac{1/\gamma_{d \text{min}} - 1/\gamma_{d}}{1/\gamma_{d \text{min}} - 1/\gamma_{d \text{max}}}$$

e = in-situ void ratio

 e_{max} = void ratio in loosest condition

 e_{min} = void ratio in densest condition

 γ_d = dry unit weight in the field

 $\gamma_{d(max)}$ = dry unit weight in densest condition

 $\gamma_{d(min)}$ = dry unit weight in loosest condition

Shrinkage limit: S.L.

S.L. =
$$\frac{(m_1 - m_2)}{m_2} - \frac{(V_1 - V_2)}{m_2} \rho_w$$
 in %

 m_1 = initial mass in saturated state

m2 = final mass in dry state

 V_1 = initial volume in saturated state

 V_2 = final volume in dry state

Plasticity Index: P.I.

L.L. = liquid limit

P.L. = plastic limit

Liquidity Index: L.I.

$$L.I. = \frac{\omega - P.L.}{PI}$$

 ω = in-situ moisture content

P.L. = plastic limit

P.I. = plasticity index

Consistency Index : C.I.

$$C.I. = \frac{L.L. - \omega}{L.L. - P.I.}$$

Soil Characteristic Liquidity Index

brittle solid < 0
plastic < 1
liquid >1

Shrinkage Ratio: S.R.

S.R. =
$$\frac{m_2}{V_2 \rho_w}$$

Specific Gravity: Gs

$$G_s = \frac{1}{\frac{1}{SR} - \frac{SL}{100}}$$

SOIL CLASSIFICATION

U.S. Dept of Agriculture (USDA Method)

 Gravel
 Sand
 Silt
 Clay

 > 2 mm
 2 to 0.05mm
 0.05 to 0.002mm
 < 0.002 mm</td>

AASHTO Method

Gravel Sand Silt Clay
76.2 to 2mm 2 to 0.075mm 0.075 to 0.002mm < 0.002 mm

Unified Soil Classification System

Gravel Sand Fines (Silt & Clay)
76.2 to 4.75 mm 4.75 to 0.075 mm < 0.075 mm

Particle Size Distribution

Effective Size, D₁₀

- is the diameter in the particle size distirbution curve corresponding to 10% finer.

Uniformity coefficient, Cu

$$C_{\rm u} = \frac{D_{60}}{D_{10}}$$

Coefficient of gradation or curvature, C_c

$$C_{c} = \frac{(D_{30})^{2}}{D_{60} \cdot D_{10}}$$

 D_{30} = particle diameter corresponding to 30% finer D_{60} = particle diameter corresponding to 60% finer

Sorting Coefficient, So

$$S_o = \sqrt{\frac{D_{75}}{D_{25}}}$$

 D_{75} = particle diameter corresponding to 75% finer D_{25} = particle diameter corresponding to 25% finer

AASHTO Classification System

Group Index, G.I. =
$$(F - 35)[0.2 + 0.005(LL - 40)] + 0.01(F - 15)(PI - 10)$$

Partial Group Index = 0.01(F - 15)(PI - 10)

F = % passing sieve # 200

LL = liquid limit

PI = plasticity index

Group index must be whole and positive, if the computed value is negative use zero. If the group classification is A-2-6 & A-2-7 attached Partial Group Index only.

SOIL COMPACTION

Compaction - is the densification of soils by the application of mechanical energy. It may also involve a modification of the water content as well as gradation of the soil.

Some methods for determining density of soil in the field:

- 1. Sand Cone Method
- 2. Balloon Method
- 3. Oil Method

To determine the dry unit weight of compaction in the field:

γ_d = dry unit weight excavated from the hole volume of the hole

Volume of hole, V =
$$\frac{W_s - W_c}{\gamma_{d(sand)}}$$

 W_s = weight of sand to fill the hole and cone W_c = weight of sand to fill the cone only

Relative Compaction, R

$$R = \frac{\gamma_{d(field)}}{\gamma_{d(\text{max-lab})}}$$

 $\gamma_{d(field)}$ = compacted field dry unit weight $\gamma_{d(max-lab)}$ = maximum dry unit weight determined in the laboratory by Proctor Test

GEOTECHNICAL

PERMEABILITY, SEEPAGE of WATER in SOIL

Coefficient of Permeability, k (Laboratory Test)

Constant Head Test :
$$k = \frac{QL}{Aht}$$

Q = volume of water collected

A = area of cross section of soil specimen

t = duration of water collection

i = hydraulic gradient = $\frac{h}{L}$

Falling Head Test: $k = \frac{aL}{At} \ln \frac{h_1}{h_2}$

a = cross-sectional area of the stand pipe

A = cross-sectional area of soil specimen

t = duration of water collection

 h_1 = initial head when t_1 = 0

 h_2 = final head when t_2 = t

L = length of soil specimen

i = hydraulic gradient = $\frac{h_1 - h_2}{l}$

Rate of water flow in soil, Q

k = coefficient of permeability

i = hydraulic gradient

A = cross-sectinal area of soil sample

Discharge velocity, V

Seepage velocity, Vs

$$V_s = \frac{V}{n}$$

n = porosity

Absolute Permeability, K

$$K = \frac{k \eta}{\gamma_w}$$

k = coefficient of permeability

 η = viscosity of water

 γ_w = unit weight of water

Transmissibilty of Soil Stratum, T

$$T = Kb$$

K = average coefficient of permeability

b = thickness of aquifer

Equivalent Coefficient of Permeability in Layered Soil:

Equivalent Horizontal Coefficent, $K_{H(eq)}$

$$K_{H (eq)} = \frac{1}{H} (k_1 H_1 + k_2 H_2 + ... + k_n H_n)$$

Equivalent Vertical Coefficient, $K_{V(eq)}$

$$K_{V(eq)} = \frac{H}{\frac{H_1}{k} + \frac{H_2}{k_2} + ... + \frac{H_n}{k_n}}$$

Vertical Stresses in Soil

- 1. Total stress at C: σ_c = γ_d h_1 + γ_{sat} h_2
- 2. Pore water pressure at $C: u_c = \gamma_w h_2$
- 3. Effective stress at C = Total stress Pore pressure

- 1. Total stress at C: σ_c = γ_d h_1 + γ_{sat} h_2
- 2. Pore water pressure at $C: u_c = \gamma_w h$
- 3. Effective stress at C = Total stress Pore pressure $\sigma_c' = \sigma_c u_c$

- 1. Total stress at C: $\sigma_c = \gamma_d h_1 + \gamma h_2$ $\sigma_B = \gamma_d h_1$
- 2. Pore water pressure at $C: u_B = -S \gamma_w h_2$ $u_C = 0$
- 3. Effective stress at ${\it C}$ = Total stress Pore pressure

$$\sigma_c' = \sigma_c - u_c$$

$$\sigma_B' = \sigma_B - (-u_B)$$

Compressibility of Soil

Settlement - the total vertical deformation at the surface resulting from the load. When a soil deposit is loaded (by a structure or a man-made fill) deformation will occur. The movement may be downward with an increase in load or upward (called swelling) with a decrease in load.

Components of Settlement:

$$S = S_1 + S_2 + S_3$$

S = total settlement

 S_1 = immediate or distortion settlement

 S_2 = primary consolidation settlement

 S_3 = secondary consolidation settlement

Primary Consolidation Settlement, S_2

Normally Consolidated Clays

$$S_2 = \frac{C_c H}{1 + e_o} log \frac{P_o + \Delta P}{P_o}$$

 C_c = compression index

eo = in-situ void ratio

Po = effective overburden pressure at the middle of the clay layer

 ΔP = average increase of stress on clay layer

H = thickness of clay layer

Over - Consolidated Clays

1. when
$$P_o + \Delta P < P_c$$

$$S_2 = \frac{C_s H}{1 + e_o} log \frac{P_o + \Delta P}{P_o}$$

 C_s = swell index

= ranges from 1/5 to 1/10 of C_c

 P_c = preconsolidation pressure

2. when
$$P_0 + \Delta P > P_c$$

$$S_2 = \frac{C_s H}{1 + e_0} log \frac{P_c}{P_o} + \frac{C_c H}{1 + e_0} log \frac{P_o + \Delta P}{P_c}$$

Secondary Consolidation Settlement, S3

$$S_3 = C'_a H \log \frac{t_2}{t_1}$$

$$C'_a = \frac{C_a}{1 + e_p}$$

$$C'_a = \frac{C_a}{1 + e_p}$$

$$C_a = \frac{\Delta e}{\log \frac{t_2}{t_1}}$$

 C_a = secondary compression index

 e_p = void ratio at the end of primary consolidation

$$\Delta e = C_c \log \frac{P_o + \Delta P}{P_o}$$

 t_1 = time for completion of primary consolidation

 t_2 = time after completion of primary

consolidation

Immediate Settlement, S1

$$S_1 = C_s q B \frac{(1-\mu^2)}{E_s}$$

 C_s = shape and foundation rigidity factor

q = pressure due to load

B = width of foundation or diameter of circular foundation

 μ = Poisson's ratio of soil

 E_s = modulus of elasticity of soil

Compression Index, Cc

 $C_c = 0.009 (LL -10)$ remolded clays

$$C_c = \frac{e_1 - e_2}{\log \frac{P_2}{P_1}}$$

Coefficient of Compressibility, av

$$a_v = \frac{e_1 - e_2}{P_2 - P_1}$$

Coefficient of Volume Compressibility, my

$$m_v = \frac{a_v}{1 + e_{ave}}$$

Time Rate of Consolidation, t

$$T_v = \frac{C_v t}{H^2_{dr}}$$

 C_v = coefficient of consolidation

 T_v = time factor

H_{dr} = drainage distance of water

Preconsolidation Pressure, Pc

$$OCR = \frac{P_c}{P_o}$$

OCR = overconsolidation ratio

P_c = preconsolidation pressure

Po = soil overburden pressure

Bearing Capacity of Foundations

Terzaghi's Bearing-Capacity

Ultimate Bearing Capacity, quit

A. General Shear Failure (Dense sand and Stiffclay)

$$q_{ult} = 1.3c N_c + q N_a + 0.4 \gamma B N_v$$

$$q_{ult}$$
 = 1.3c N_c + q N_q + 0.3 γ B N_γ

c = cohesion

q = effective pressure at the bottom of the footing

B = width of footing or diameter of footing $N_c N_q N_y = bearing$ capacity factors

Bearing Capacity Factors

- 1. see Tables
- 2. If no table available

$$N_c = (N_q - 1) \cot \phi$$

$$N_q = e^{\pi \tan \phi} \tan^2 (45 + \frac{\pi}{2})$$

$$N_y = (N_q + 1) \tan 1.4\phi$$

Modification of γ value in the 3rd term of the ultimate bearing capacity equation:

Case 1: the water table is located above the bottom of the foundation

$$\gamma = \gamma_{\text{sat}} - \gamma_{\text{w}}$$

Case 2: the water table is located at the bottom of the foundation

$$\gamma = \gamma_{\text{sat}} - \gamma_{\rm w}$$

Case 3: the water table is located so that d < B

$$\begin{split} \gamma &= \frac{1}{B} \Big[\; \gamma_{\text{dry}}(d) + \gamma' \left(B - d \right) \; \Big] \\ \gamma \; \dot{} &= \; \gamma_{\text{sat}} - \gamma_{\text{w}} \end{split}$$

Case 4: the water table is located so that d > B

$$\gamma = \ \gamma_{\text{dry}}$$

Shear Strength of Soil

 ϕ = angle of internal friction

c = cohesion

= 0 if normally consolidated clay

σ

 σ = normal stress

 τ = shearing stress

Tri-Axial Test Method

Δσ

 σ_3 = chamber confining pressure, cell pressure

deviator stress

 σ_1

= minor principal stress

 σ_1 = major principal stress

 $\Delta \sigma$ = deviator stress

Unconfined Compression Test Method

Unconsolidated - Undrained Test Method

cu = undrained shear strength

Lateral Earth Pressure

$$\begin{split} &\sigma_v = \text{ vertical pressure at depth z} \\ &\sigma_h = \text{ lateral pressure at depth z} \\ &\text{ k = coefficient of lateral earth pressure} \end{split}$$

Lateral Earth Pressure on Retaining Wall with Horizontal Backfill

At rest earth pressure coefficient, ko
(normally consolidated soil)

$$k_o = 1 - \sin \phi$$
 $\phi = angle of internal friction$

Rankine active earth pressure, k_a

$$k_{a} = \frac{1 - \sin \phi}{1 + \sin \phi}$$

Rankine passive earth pressure, k_{p}

$$k_p = \frac{1 + \sin \phi}{1 - \sin \phi}$$

Pressure diagram due to effective unit weight of soil:

Pressure diagram due to water:

Pressure diagram due to surcharge:

Pressure diagram due to cohesion of soil:

Qall

 $||_{\mathbf{Q_f}}$

Qb

Braced Sheetings

Cuts in Sand

Cuts in Clay when $\frac{\gamma\,H}{C}$ > 4

Cuts in Clay when $\frac{\gamma H}{C}$ < 4

 k_{α} = Rankine active pressure coefficient

C = cohesion of clay

 γ = unit weight of soil

H = depth of cut

Piles on Clay

α method

End bearing capacity

 Q_b = $C N_c A_{tip}$

Frictional capcity

 $Q_f = \Sigma \alpha CPL$

C = cohesion of soil

N_c = bearing capacity factor

 A_{tip} = area of plie at the tip

 α = adhesion factor

P = perimeter of pile

L = length of pile

$\lambda \text{ method}$

End bearing capacity $Q_b = C N_c A_{tip}$

Frictional capcity

 $Q_f = PL\lambda (Q_v + 2C)$

 $Q_v = \frac{area of P_v diagram}{L}$

 $\|_{\mathbf{Q}_{\mathrm{f}}}$

P_v diagram

Qall

Design Load : $Q_{all} = \frac{Q_b + Q_f}{F.S.}$

Piles on Sand

End bearing capacity

$$Q_b = P_v N_q A_{tip}$$

Frictional capcity

 Q_f = P (area of P_{ν} diagram) K μ

Design Load : Qall =

$$Q_{all} = \frac{Q_b + Q_f}{F.S.}$$

 P_v = vertical soil pressure at the tip

 N_q = bearing capacity factor

K = coef of lateral bet pile and sand earth pressure factor

 μ = tan θ

 $\boldsymbol{\theta}$ = angle of friction bet pile and sand

Critical Depth, Dc

i. $D_c = 20 \times diameter$ of pile for dense sand

ii. $D_c = 10 \times diameter$ of pile for loose sand

Note : The pressure below the critical depth, D_c is assumed to be uniform.

Drilled Piles on Clay

End bearing capacity

$$Q_b = q_p A_{tip}$$

 $q_p = 6C \left[1 + 0.2 \frac{L_1 + L_2}{D_b}\right]$ but not greater than CN_c

D_b = bell diameter

D_s = shaft diameter

Frictional capcity

$$Q_f = \Sigma \alpha CPL$$

 α = adhesion factor

= 0 for the top 1.5 m and diameter $D_{\rm s}$ above the bottom of the drilled shaft or above the top of the bell.

P = perimeter of pile

L = effective length of pile that resist friction

Design Load : $Q_{all} = \frac{Q_b + Q_f}{F.S.}$

Drilled Piles on Sand

End bearing capacity

$$Q_b = q_p A_{tip}$$

a. N_{value} < 50

$$q_p = 57.5 N_{value} < 2900 kPa$$

b. $N_{value} > 50$

$$q_p = 0.59[N_{value}(\frac{P_a}{P_{vb}})]^{0.8}$$

 $P_a = 100 \text{ kPa}$

 P_{vb} = effective vertical pressure at base elevation

Frictional capcity : $Q_f = \Sigma \beta P_v P L$

a. $N_{value} \ge 15$

$$\beta$$
 = 1.5 - n (z)^{0.5} (drilled on sand)
 β = 2 - 0.15 (z)^{0.5} (drilled on gravel)

b. $N_{value} < 15$

$$\beta = \frac{N_{value}}{15} [1.5 - n (z)^{0.5}]$$

 P_{ν} = effective vertical overburden pressure at depth z.

z = height from ground surface to mid-height of a given layer

n = 0.245

P = perimeter of pile

L = length of pile

Group of Piles

Efficiency of Group of Piles, Eg

Converse - Labarre Equation:

$$E_g = 1 - \frac{\Theta[(n-1)m + (m-1)n]}{90 \text{ m n}}$$

Bowles:

$$E_g = \frac{2(m+n-2)S+4D}{\pi D m n}$$

m = number of rows of piles n = number of piles in a row

$$\tan \theta = \frac{D}{S}$$

D = diameter of pile

S = spacing of piles center to center

Settlement of Piles

$$S_e = S_{e1} + S_{e2} + S_{e3}$$

Elastic Settlement of Pile, S_{e1}

$$S_{e1} = \frac{(Q_{wp} + \xi Q_{ws})L}{A_p E_p}$$

 Q_{wp} = load carried at the pile point under working load condition

Qws = load carried by frictional resistance under working load condition

 A_p = cross sectional area of pile

L = length of pile

GEOTECHNICAL

Settlement of Pile caused by the Load at the Pile Tip , $S_{\text{e}2}$

$$S_{e2} = \frac{q_{wp} D}{E_s} (1 - \mu_s^2) I_{wp}$$
$$q_{wp} = \frac{Q_{wp}}{A_p}$$

 E_s = modulus of elasticity of soil μ_s = Poisson's ratio of soil I_{wp} = influence factor

Settlement of Pile caused by the Load transmitted along of the pile shaft, S_{e3}

$$S_{e3} = \frac{Q_{ws} D}{PLE_s} (1 - \mu_s^2) I_{ws}$$

 $I_{ws} = 2 + 0.35 \sqrt{\frac{L}{D}}$

P = perimeter of pile L = length of pile I_{ws} = influence factor D = diameter of pile

Settlement of Group of Piles

$$S = \sum \frac{C_c H}{1 + e_o} \log \frac{P_o + \Delta P}{P_o}$$

 C_c = compression index

H =thickness of clay layer

eo = initial void ratio

 ΔP = average increase in pressure on clay

 P_{\circ} = effective overburden pressure at the mid-

height of the clay layer