HISTORICAL BACKGROUND

CONCRETE

a mixture of sand, gravel, crushed rock or other aggregates held together in a rock-like mass with a paste of cement and water.

ADMIXTURES

materials added to concrete to change certain characteristics such as workability, durability and time of hardening.

JOSEPH ASPDEN

an English bricklayer who obtained a patent for Portland cement

JOSEPH MONIER

a Frenchman who invented reinforced concrete a received a patent for the const. of concrete basins and tubs and reservoirs reinforced w/ wire mesh and iron wire in 1867.

DESIGN METHODS:

- Working Stress Design, Alternate
 Stress Design, or Straight-Line Design
- 2. USD Ultimate Stress Design or Strength Design

PROPERTIES OF MATERIALS:

CONCRETE:

- fc allowable compressive stress of conc.
- 0.45 fc' (beams/slabs/footings)
- 0.25 fc' (columns)
- fc' specified compressive strength of conc. at 28 days curing (MPa)
- γ_{conc} unit weight of concrete
 - 23.54 KN/m³
- Ec modulus of elasticity of concrete
 - 4700 \(\int \text{fc'} \) (MPa)

STEEL:

- fs allowable tensile stress of steel (MPa)
- fs 0.50 fy (beams/slabs/footings)
- fs 0.40 fy (columns)
- fy yield stress of steel (MPa)
- γ_{steel} unit weight of steel
 - 77 KN/m³
- Ec modulus of elasticity of concrete
 - 200,000 MPa

TYPES OF PROBLEMS

- 1. Design given the load, determine the size
- 2. Investigation given the size, determine the load

MODES OF FAILURE IN BENDING

- Crushing of Concrete when the strain concrete
 reaches the ultimate strain of 0.003 mm/mm.
- 2. Yielding of Steel when the actual tensile stress of steel "fs" reaches the yield stress "fy"
- 3. Simultaneous crushing of concrete and Yielding of Steel

TYPES OF DESIGN

- Overreinforced when failure is due to crushing of concrete.
- 2. Underreinforced when failure is initiated by yielding of steel.
- 3. Balanced Design when failure is caused by simultaneous crushing of concrete and yielding of steel

FACTORED LOAD COMBINATION

(NSCP C101-01)

- 1. U = 1.4DL + 1.7LL
- 2. U = 0.75(1.4DL + 1.7LL + 1.7 W)U = 0.90DL + 1.3W $\ge (# 1)$
- 3. U = 1.1DL + 1.3LL + 1.1EU = 0.90DL + 1.1E $\ge (# 1)$
- 4. U = 1.4DL + 1.7LL + 1.7H U = 0.90DL $\geq (# 1)$
 - DL Dead Load
- E Earthquake Load
- LL Live Load
- H Earth Pressure
- W Wind Load

WORKING STRESS DESIGN (WSD)

DESIGN OF BEAMS FOR FLEXURE

where:

- h = overall depth of the beam (mm)
- z = steel covering (measure from the centroid of bar)
- d = effective depth of the beam (mm)
- d = h z
- As = area of the reinforcement (square millimeters)
- fc' = compressive strength of concrete (MPa)
- fs = tensile strength of steel (MPa)
- b = base of the beam (mm)
- n = modular ratio(always a whole number)
- n = Es/Ec

Location of the neutral axis (kd)

$$\Sigma M_{N.A.} = 0$$

b(kd)(kd/2) - nAs (d - kd) = 0
kd = ------

Moment of Inertia of the Transformed Section

$$I_{N.A.}= (1/3)(b)(kd)^3 + nAs (d - kd)^2$$

Resisting Moment of Concrete:

Mc = C(jd)
Mc = fc/2 (b)(kd)(jd)
Mc =
$$(1/2)(fc)(kj)(bd^2)$$

Resisting Moment of Steel:

Stress of Concrete

$$r_{C} = \frac{Mc (kd)}{I_{N.A.}}$$
 where:

Mc - resisting moment of concrete

Stress of Steel

Compressive force of Concrete

Tensile force of Steel

Moment Arm (jd)

Constant (k)

$$k = \frac{n}{n + fs/fc}$$
 (For Design Only)

$$k = \sqrt{2\rho n + (\rho n)^2} - \rho n$$
 (For Investigation Only)

Steel Ratio

$$\rho = \frac{As}{bd}$$

ULTIMATE STRENGTH DESIGN (USD)

A. BEAMS (FLEXURAL STRESS)

1. Singly Reinforced Rectangular Beam (Reinforced in Tension Only)

$$a = \beta_1 c$$

For fc' \leq 30 MPa , use $\beta_1 = 0.85$ For fc' > 30 MPa ,

 $\beta_1 = 0.85 - 0.008$ (fc' - 30) but should not be less than 0.65

$$a = \frac{As fy}{0.85 fc' b}$$

$$\omega = \frac{\rho fy}{fc'}$$

 $Mu = \phi Ru bd^2$ (Resisting Moment)

Ru = fc'
$$\omega$$
 (1 - 0.59 ω)

$$\rho = \frac{0.85 \text{ fc'}}{\text{fy}} \left[1 - \sqrt{1 - \frac{2\text{Ru}}{0.85 \text{ fc'}}} \right]$$

$$As = \rho bd$$

Balanced Steel Ratio (P_b)

$$\rho_b = \frac{0.85 \text{ fc'} \beta_1 600}{\text{fy (600 + fy)}}$$

Maximum and Minimum Steel Ratio

$$\rho_{\text{max}} = 0.75 \, \rho_{\text{b}}$$

$$\rho_{\text{min}} = 1.4 \, / \, \text{fy}$$

2. Doubly Reinforced Rectangular Beam (Reinforced in Tension/Compression)

1st STAGE

2nd STAGE

Forces:

 $C_1 = 0.85 \text{ fc' ab}$ $C = As_1 \text{fs}$ Forces: C' = As' fs' T₁ = As₂fs (d-d')

Resisting Moment: $M_{u1} = \phi 0.85fc'ab (d-a/2)$

Resisting Moment: $M_{u2} = \phi As'fs' (d-d')$

 $M_{11} = \phi As_1 fs (d-a/2)$

 $M_{u2} = \phi As_2 fs(d-d')$

TOTAL:

$$T = T_1 + T_2$$

 $A_S = As_1 + As_2$

$$M_U = M_{U1} + M_{U2}$$

where:

a = depth of equivalent stress block

As = area of tension reinforcement, square millimeters

b = width of the compression face of member

c = distance from extreme compression fiber to N.A. (mm)

REINFORCED CONCRETE DESIGN FORMULAS AND PRINCIPLES

d = distance from extreme compression fiber to centroid of tension reinforcement (mm)

d' = thickness of concrete cover measured from extreme tension fiber to center of the bar or wire, (mm)

fc' = specified compressive stress of concrete (MPa)

fy = specified yield strength of steel (MPa)

Mn = nominal moment, (N-mm)

Mu = factored moment at section, (N-mm)

 ρ = ratio of tension reinforcement = As/bd

ρ_b= balance steel ratio

 ϕ = strength reduction factor

C. SHEAR STRESS AND DIAGONAL TENSION

$$V_u = \phi V_n$$
where $\phi = 0.85$

$$V_n = V_c + V_s$$

$$V_c = 1/6 \sqrt{fc'}$$
 bd

Spacing of Stirrups:

$$S = \frac{Av fy d}{Vs}$$

NSCP/ACI Code Specs:

If $Vs \le 1/3 \sqrt{fc'}$ bd ,Smax = d/2 or 600mm If $Vs > 1/3 \sqrt{fc'}$ bd ,Smax = d/4 or 300mm

 $A_{v min} = bS/3fy$

 V_{II} = factored or ultimate shear

 V_c = shear force provided by conc.

 $V_n = nominal shear$

A_{vmin} = area of steel to resist shear

= 2 Asteel

FOR SINGLY REINFORCED BEAM

A. Computing Mu with given tension steel area (As)

I. Solve for
$$\rho = \frac{As}{bd}$$

II. Check if steel yields by computing ρ_h

$$\rho_{\rm b} = \frac{0.85 \, \text{fc'} \beta_1 600}{\text{fy (600 + fy)}}$$

If $\rho \le \rho_b$ steel yields , proceed to step III If $\rho > \rho_b$ steel does not yield , proceed to step IV

III.
$$\rho \le \rho_b$$

$$\omega = \frac{\rho \, fy}{fc'}$$

$$Mu = \phi fc' bd^2\omega (1 - 0.59 \omega)$$

IV.
$$\rho > \rho_b$$
 (fy = fs)

Solve for fs from the strain diagram:

$$\frac{\text{fs/Es}}{\text{d-c}} = \frac{0.003}{\text{c}}$$
; fs = $600 \frac{\text{d-c}}{\text{c}}$

Solve for c by summing up forces along hor.

$$T = C \;\; ; a = \beta_1 \, c$$
 600 As (d-c) = 0.85 β_1 fc b c^2

Use quadratic formula to solve for "c"

Then, solve for fs and "a" with known "c"

$$fs = 600 \frac{d - c}{c}$$
; $a = \beta_1 c$

Finally, solve for Mu:

$$M_u = \phi 0.85 \text{fc'ab (d-a/2)}$$
 or $M_u = \phi \text{ As fs (d-a/2)}$

B. Computing the required tension steel area (As) of beam with given Mu

I. Solve for ρ_{max} and M_{umax}

$$\rho_{\text{max}} = 0.75 \frac{0.85 \text{ fc'}\beta_1600}{\text{fy (600 + fy)}} = \rho$$

Mumax = with considered factored load

$$\omega = \frac{\rho \, \text{fy}}{\text{fc'}} = \underline{\hspace{1cm}}$$

$$M_{umax} = \phi fc' bd^2\omega (1 - 0.59 \omega)$$

- If $M_u \le M_{umax}$ design as Single Reinforced then, proceed to step II.
- If M_u > M_{umax} design as Doubly Reinforced
- II. Solve for ρ

$$Mu = \phi Ru bd^2$$
 (Solve for Ru)

$$\rho = \frac{0.85 \, \text{fc'}}{\text{fy}} \left[1 - \sqrt{1 - \frac{2 \text{Ru}}{0.85 \, \text{fc'}}} \right] = \underline{\hspace{1cm}}$$

As =
$$\rho$$
bd = _____

FOR DOUBLY REINFORCED BEAM

A. Computing As and As' of a Doubly Reinforced Beam with given Mu.

- I. Solve for $As_1 = \rho_{max}bd$
- II. Solve for "a" and "c": $C_1 = T_1$

$$0.85 \, \text{f'c ab} = \text{As}_1 \, \text{fy} \; ; \; a = \underline{\hspace{1cm}}$$

$$a = \beta_1 c$$
; $c =$

III. Solve for M_{U1} , M_{U2} and A_{s2}

$$M_{u1} = \phi As_1 fy (d-a/2)$$

$$M_{u2} = M_{U1} - M_{U}$$

$$M_{u2} = \phi As_2 fy(d-d')$$
; $A_{s2} =$

IV. Verify of compression will yield.

Es = 200.000

$$fs' = 600 \frac{c - d'}{c}$$

If $fs' \ge fy$, proceed to step V.

If fs' < fy, proceed to step VI.

V. fs' ≥ fy, then use fs' = fy (compression steel yields)

$$As' = As_2$$

VI. fs' < fy, then use fs' (compression steel will not yield)

$$C_2 = T_2$$

$$As' fs' = As_2 fy$$

$$As' = \underline{\hspace{1cm}}$$

B. Computing Mu of a Doubly Reinforced Beam with given As and As'

I. Assume Compression steel yield

II. Solve for a and c:

$$[C_1 = T_1]$$

0.85 fc' ab =
$$As_1fy$$
; a = ____
a = β_1c ; c =

III. Verify if Compression steel will yield

$$fs' = 600 \frac{c - d'}{c}$$

If $fs' \ge fy$, proceed to step IV. If fs' < fy, proceed to step V.

IV. Since fs' \geq fy, compression steel yields $M_U = M_{U1} + M_{U2}$ $M_U = \phi As_1 fy (d-a/2) + \phi As' fy(d-d')$

V. Since fs' < fy, assumption is wrong

$$fs' = 600 \frac{c - d'}{c}$$

From stress diagram.

$$[C1 + C2 = T]$$

0.85 fc' ab + As' fs' = As fy

a =
$$\beta_1$$
 c
0.85 fc' β_4 c b + As' $600 \frac{c - d'}{c}$ = As fy

Solve for c by quadratic formula Solve for fs' and "a" Solve for Mu:

$$M_u = \phi 0.85 \text{fc'ab (d-a/2)} + \phi \text{ As' fs' (d-d')}$$

VERTICAL STIRRUP DESIGN

- I. Compute the factored shear force, Vu
- II. Calculate the shear strength provided by concrete, Vc

$$V_c = 1/6 \sqrt{fc'}$$
 bd

If $V_u > \phi V_c$, stirrups is necessary, proceed to to Step III.

If $V_u < \phi V_c$, but $V_u > 1/2 \phi V_c$ proceed to to Step V

If $V_u < 1/2 \phi V_c$, stirrups are not needed

III. Calculate the shear strength Vs to be provided by the stirrup.

1.
$$V_n = V_u / \phi$$

2. $V_s = V_n - V_c = V_u / \phi - V_c$

If
$$V_s \le 2/3 \sqrt{fc'} b_W d$$
, proceed to IV. If $V_s > 2/3 \sqrt{fc'} b_W d$, adjust the size of the beam

IV. Spacing of stirrups:

Spacing,
$$S = \frac{Av \text{ fy d}}{Vs}$$

If S < 25mm, increase the value of Av. either by bigger bar or shear area.

Maximum spacing, s:

If Vs
$$\leq$$
 1/3 $\sqrt{fc'}$ bd ,Smax = d/2 or 600mm If Vs $>$ 1/3 $\sqrt{fc'}$ bd , Smax = d/4 or 300mm V. If V_u $<$ ϕ V_c , but V_u $>$ 1/2 ϕ V_c

$$A_{v min} = bw S / 3fy$$

where S = d/2 or 600mm (whichever is smaller

SITUATION	f
Flexure, without axial load	0.90
Axial tension and axial tension w/ flexure	0.90
Shear and torsion	0.85
Compression members, spirally reinforced	0.75
Other Compression members	0.70
Bearing on concrete	0.70
Plain Concrete: flexure, compression, shear and bearing	0.65

TYPICAL RESISTANCE FACTORS ARE AS FOLLOWS:

CODE PROVISIONS: FOR DESIGN OF SINGLY-REINFORCED BEAMS

To ensure yield failure: $\rho_{max} = 0.75 \, \rho_{b}$

To avoid sudden tensile failure : $\rho_{min} = \frac{0.25\sqrt{fc'}}{fy} \ge \frac{1.4}{fy}$

To control deflection: $\rho \leq 0.18 \frac{fc'}{fy}$

BALANCED STEEL RATIOS

1. BEAM REINFORCED FOR TENSION

$$P_b = \frac{0.85 \text{ fc'}\beta_1 600}{\text{fy (600 + fy)}}$$

2. BEAM REINFORCED FOR COMPRESSION

Checking Ductility

$$\overline{\rho} = \rho_b + \rho'$$
 where: $\rho' = As'$

if $\rho < \overline{\rho}$, tension steel yields fs = fy

For compression steel

$$\rho_{\text{lim}} = 0.85 \, \underline{\beta \, \text{fc' d' 600}} + \rho'$$
fy d (600-fy)

if $~~\rho~<\rho_{lim}~$, compression steel yields fs = fy

SHEARING STRESS OF RC BEAMS

Nominal Shear Strength Provided by Concete:

$$V_n = V_c + V_s$$

where:

Vn = nominal shear strength of RC section

Vc = nominal shear strength provided by concrete

Vs = nominal shear strength of the shear reinforcement

For members subjected to shear and flexure only:

$$V_c = \frac{1}{6} \sqrt{fc'}$$
 bw d

For members subjected to axial compression:

$$V_c = \frac{1}{6} \sqrt{fc'} b_w d \left(1 + \frac{Nu}{14Aq}\right)$$

where:

Ag = gross area of section in sq.mm Nu = factored axial load occurring with Vu

(-) for compression, (+) for tension

Nu/Aa = expressed in MPa

For members subjected to shear and flexure:

$$V_{c} = \frac{1}{7} \left(\sqrt{fc'} + 120 P_{w} \frac{Vu d}{M_{u}} \right) b_{w} d$$

but shall not be greater than

$$V_{c} = 0.30 \sqrt{fc'} b_{w}d$$

where:

$$\frac{\text{Vu d}}{\text{M}_{\text{u}}} \leq 1.$$

Mu = factored moment ocurring simultaneously w/ Vu

$$\rho_{\rm w} = \frac{As}{b_{\rm w}c}$$

For members subjected to axial compression:

$$M_m = M_u - N_u \left(\frac{4h - d}{8}\right)$$

but shall not be greater than

$$V_c = 0.30 \sqrt{fc'} b_w d \sqrt{1 + \frac{0.30 N_u}{A_g}}$$

Substitute Mm for Mu and Vud/Mu not limited to 1.0

where, h = overall thickness of member

REINFORCED CONCRETE DESIGN FORMULAS AND PRINCIPLES

For members subjected to significant axial tension:

$$V_c = \frac{1}{6} \sqrt{fc'} b_w d \left(1 + \frac{0.30 N_u}{A_g} \right)$$

where

Nu/Ag = expressed in MPa Nu is negative for tension For shear reinforcement, fy < 414 MPa

Distance of Stirrups from support:

a. 0.50 S from face of column support

b. 0.25 S from face of beam support

T - BEAMS

Code Requirements for T-beams

- In T-beam construction, the flange and web shall be built integrally or otherwise effectively bonded together.
- 2. The width of slab effective as a T-beam shall not exceed 1/4 of the span of the beam, and effective overhanging flange on each side of the web shall not exceed:
- a) 8 times the slab thickness and
- b) 1/2 the clear distance to the next web
- 3. For beams with slab on one side only, the effective overhanging flange shall not exceed:
- a) 1/12 the span length of the beam,
- b) 6 times the slab thickness
- c) 1/2 the clear distance to the next web

For Interior Beam

1)
$$b = L/4$$

2) $b = 16t + b_v$
3) $b = S_1/2 + S_2/2 + b_w$ choose the smallest

BY: NTDEGUMA

For End Beam

1)
$$b' = L/12 + b'w$$

2) $b' = 6t + b'_w$ choose the smallest

For Symmetrical Interior Beam

4. Isolated beams in which T-shape are used to provide a flange for additional compression area shall a flange thickness not less than 1/2 the width of the web and an effective flange width not more than four times the width of the web.

$$t \ge b_w/2$$
$$b \le 4b_w$$

7/20