BSCE QUARANTINE REVIEWER DIAGNOSTIC EXAMS MATHEMATICS, SURVEYING AND TRANSPORTATION ENGINEERING

MATH	EMATICS, SURVEYING	AND TRANSPORTATION	N ENGINEERING	
1.		ID 19 Cases in a livable potential cted number of COVID		000 5 days back to 17,250 as of present.
	a. 245,270	b. 245,499	c. 249,455	d. 299,405
2.	These are lines whice are disallowed.	h are used for overtakir	ng from both direction	s of the road and all crossing movements
	a. Single unbroken v	vhite lines	b. Single unbroke	en yellow lines
	c. Double unbroken	yellow lines	d. Double unbrok	ken yellow lines
3.	·	after 2 PM will coincide		
	a. 30.154	b. 19.909	c. 10.909	d. 15.151
4.	Given the rectangle A Mathbits.com	MATH as shown in the	figure, the diagonals a	re 36 inches. Determine the value of y.
	a. 0	b. 2	c. 5	d. 4
5.	have been selected, sections, respectivel	one at 0 meters, one at	50 meters, one at 100 are meters, 42 square	150 meters in length. Four cross sections meters, and one at 150 meters. The cross meters, 19 square meters, and 34 square d. 4,600
6.	•	erest, compounded mo		ng of every month for 10 years. The fund e end of the month. How much is in the
	a. P 195,327.15	b. P 190,300.18	c. P 193,514.27	d. P 194,217.51
7.	Suppose f(x) is a line a. 8/3	ear equation such that f b8/3	(-1/2) = -7 and f(1) = -3 c. 3/8	3, find the slope the line. d3/8
8.	How many four digrepititions?	rit numbers can be for	rmed with ten digits	if zero should be the last digit without
	a. 5040	b. 504	c. 18440	d. 540
9.	The speed of the tra Compute the accele		from 15 m/s to 7.0 m	/s while traveling at the distance of 90 m.
	a0.98 m/s	b. 0.98	c0.89	d. 0.89
10	. Find the discount if I	P 15,250 is discounted f b. 311.71	or 5 months at 5% sim c. 317.71	nple discount. d. 377.71

11.	is at least ten times the wave height estimate b	e wavelength of the incid by the direct diffraction of es directly at the point o g	dent waves, there will no calculation and the estin	periment
12.	Find the length of curv Use arc basis.	e and the station at PT i	f the degree of curve is	5º and the central angle is 72º 30'.
	a. 290 m	b. 350	c. 400	d. 550
13.	at the upper base. The		e 10% of the height has	lower base of 2 cm radius and 5 cm pure dalgona liquid. Determine the d. 77.329
1.1	Datarmina the latus re	atum of the narahala va	2 – 24v	
14.	a. 6	ctum of the parabola y^: b. 12	z = 24x. c. 16	d. 20
15.	•	on and road network pla		
	a. None of them	b. Both of them	c. Intralinked	d. Interlinked
16.	Mary is 24 years old. Manna now?	Mary is twice as old as A	nna was when Mary wa	as as old as Anna is now. How old is
	a. 24	b. 12	c. 20	d. 18
17.	length was 459.242 m. tape was uniformly sup	Temperature during moported during the measu	easurement was 28ºC aurement. Find the true le	and a pull of 50 N and the measured and the pull applied was 100 N. The ength of the line if the cross-sectional 000117 and the modulus of elasticity d. 459.350
18.	The total interior angle	es of a perigon is :		
	a. 540	b. 360	c. 450	d. 300
19.				.2% interest, compounded monthly, will be in the account at the end of d. P 32,662.05
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		,
20.	Determine the derivati		22// 12 22	1, 25/, 42/25
	a. 6/(x^2 +36)	b6/(x^2+36)	c. 36/(x^2+36)	d36(x^2/36)
21.	_	e of hitting 4 of 5 five go miss at least three shots		, he had 4 attempts. Determine the
	a. 0.0227	b. 0.0272	c. 0.0222	d. 0.0327

22.	2. These are frequently used at intersections of undivided highways to alert drivers that they are approaching an intersection and to control traffic at the intersection. They also can be used effectively to control left turns at skewed intersections.				
	a. Divisional Islands	b. Refuge Islands	c. Channelized Islands	d. Curbed Islands	
23.		on their tangents have tangent passing through	_	31° , D1 = 3° and D2 = 5° . Find the	
	a. 115 m	b. 120	c. 160	d. 180	
24.	surface. Sam, with massliding northward. They	ss 80.0 kg, is given a pu collide, and after the co	sh and slides eastward. ollision Sam is moving at	At serves as a frictionless, horizontal Abigail, with mass 50.0 kg, is sent 37º north of east with a speed of 6 Determine the speed of Sam before	
	a. 4.79 m/s	b. 8.28	c. 9.97	d. 3.52	
25.	_	a warehouse using 100 00 sq m. What is the true		ly 17 cm too short. The area of the	
	a. 7715.154	b. 7175.541	c. 7554.177	d. 7751.715	
26.	_	The Bucks scored 142 v age. Determine the aver	_	dard deviations (σ = three pointer)	
	a. 133	b. 142	c. 145	d. 136	
27.	Determine the eccentri	city of the ellipse (x-4)^2	2 / 25 and (y-5)^2 / 144	= 1.	
	a. 0.909	b. 0.991	c. 0.415	d. 1.126	
28.		as been bought at P 15,0 at year 6 using Sum of y		ohone valued at P 4,500. Determine	
	a. P 6,551.54	b. P 5,544.45	c. P 5,444.45	d. P 5,454.55	
29.	The standard length of	rail for broad gauge is			
	a. 15 m	b. 11	c. 13	d. 12	
30.	Find the radius of curva	ature of $y^2 - 4x = 0$ at (4)	1,4).		
	a. 22.36	b. 25.78	c. 20.33	d. 15.42	
31.	A is in joint variation w when B = 6 and C = 4?	vith B and square of C. V	Vhen A = 144, B = 4 and	C = 3. Then what is the value of A	
	a. 12	b. 18	c. 24	d. 144	
32.	In the Figure shown, de	etermine the value of x.			
	15 5 x 4				

c. 20

b. 12

a. 9

SOLUTION:

d. 37.5

33.	In the spherical triangl	e ABC, A = 116°19', B = 5	$55^{\circ}30'$ and C = $80^{\circ}37'$. Fin	d the value of a.
	a. 175.15º	b. 115.57º	c. 118.54	d. 154.51º
34.			ght taken is at 0.65 m.	If the BS taken at BM is at 1.53 m,
	determine the elevation a. 114 m	b. 110	c. 116	d. 118
	a. 114 III	0. 110	C. 110	u. 110
35.	Determine the sum of	the coefficients of the te	erm (2x+3y)^9.	
	a. 45	b. 54	c. 1,953,125	d. 110
36.	to have a salvage value December 31, 2016, u	of \$5,000 and an estimating the straight-line me	ated life of 10 years. Dep ethod. On January 1, 201	equipment was originally estimated reciation has been recorded through 17, the estimated salvage value was Calculate the book value at the time
	a. \$ 52,000	b. \$ 60,000	c. \$47,000	d. \$ 34,000
	, , , , , , , , , , , , , , , , , , , ,	- ,,	- , ,	, , , , , , , , , , , , , , , , , , , ,
37.	Determine the real zer	os of the function 4x^3	$-3x^2 + 5x + 6 = 0.$	
	a. None	b. Three	c. Two	d. One
38.	A rock made up of hyd	rous aluminum oxides; t	he most common alumi	num ore.
	a. Graphite	b. Carbon	c. Basalt	d. Bauxite
39.	Evaluate the following	limit:		
]	$\lim_{x \to 4} \left(\frac{4-x}{x^2 - 16} \right)$	
	a1/4	b. 1⁄4	$\lim_{x \to 4} \left(\frac{4 - x}{x^2 - 16} \right)$ c. 1/8	d1/8
40	·	b. 1⁄4	c. 1/8	d1/8
40.	Determine the sum of	b. ¼ the infinite geometric se	c. 1/8 eries of 5, 2.5, 0.125	•
40.	·	b. 1⁄4	c. 1/8	d1/8 d. 10
	Determine the sum of a. 5	b. ¼ the infinite geometric se b5 eing inflated at a rate of	c. 1/8 eries of 5, 2.5, 0.125 c10	•
	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5	b. ¼ the infinite geometric se b5 eing inflated at a rate of 5 50 cm?	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i	d. 10 s the radius of the balloon increasing
	Determine the sum of a. 5 A spherical balloon is b	b. ¼ the infinite geometric se b5 eing inflated at a rate of	c. 1/8 eries of 5, 2.5, 0.125 c10	d. 10
41.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec What is the future wo	 b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited 	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i	d. 10 s the radius of the balloon increasing
41.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec	 b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited 	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i c. 25/π at the end of every more	d. 10 s the radius of the balloon increasing d. $5/\pi$
41.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec What is the future wo compounded semi-mo	 b. ¼ the infinite geometric set b5 eing inflated at a rate of 2 50 cm? b. 1/π rth of P6,500 deposited onthly? 	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i	d. 10 is the radius of the balloon increasing d. $5/\pi$ inth for 4 years if the interest is 24%
41. 42.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec What is the future wo compounded semi-mo a. P 3,452,103.25 There are three MVP to What is the probability	b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited onthly? b. P 3,258,330.10	c. $1/8$ eries of 5, 2.5, 0.125 c10 $100 \text{ cm}^3/\text{sec. How fast i}$ c. $25/\pi$ at the end of every modes. P 3,412,833.40 ams that have reached the	d. 10 is the radius of the balloon increasing d. $5/\pi$ inth for 4 years if the interest is 24%
41. 42.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec What is the future wo compounded semi-mo a. P 3,452,103.25 There are three MVP to What is the probability randomly?	b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited onthly? b. P 3,258,330.10 eams among the eight te y that the three MVP teams	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i c. 25/π at the end of every mode c. P 3,412,833.40 ams that have reached to the end of each other	d. 10 is the radius of the balloon increasing d. $5/\pi$ inth for 4 years if the interest is 24% d. P 3,304,258.01 he quarter-finals of the PBA Playoffs. In the draw if the teams are paired
41. 42.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. $1/25\pi$ cm/sec What is the future wo compounded semi-mo a. P 3,452,103.25 There are three MVP to What is the probability	b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited onthly? b. P 3,258,330.10	c. $1/8$ eries of 5, 2.5, 0.125 c10 $100 \text{ cm}^3/\text{sec. How fast i}$ c. $25/\pi$ at the end of every modes. P 3,412,833.40 ams that have reached the	d. 10 is the radius of the balloon increasing d. $5/\pi$ inth for 4 years if the interest is 24% d. P 3,304,258.01 he quarter-finals of the PBA Playoffs.
41. 42.	Determine the sum of a. 5 A spherical balloon is b when the diameter is 5 a. 1/25π cm/sec What is the future wo compounded semi-mo a. P 3,452,103.25 There are three MVP to What is the probability randomly? a. 1/4 One diagonal of a rhore	b. ¼ the infinite geometric set b5 eing inflated at a rate of 250 cm? b. 1/π rth of P6,500 deposited onthly? b. P 3,258,330.10 eams among the eight tely that the three MVP teams b. 4/7	c. 1/8 eries of 5, 2.5, 0.125 c10 100 cm^3/sec. How fast i c. 25/π at the end of every mod c. P 3,412,833.40 ams that have reached to the side of the reached to the c. 5/7 29° with a side of the reached to the	d. 10 is the radius of the balloon increasing d. $5/\pi$ inth for 4 years if the interest is 24% d. P 3,304,258.01 he quarter-finals of the PBA Playoffs. In the draw if the teams are paired

45.		a circular aperture large o		by deriving the flux that would have ar's seeing disk.
46.	line passing through th		5 m. away from the towe	ts A and B which lie on a horizontal er. A and B are 8 m. apart. The angle
	a. 5.14	b. 7.85	c. 6.24	d. 6.68
47.	mean speed and space	-mean speed?		nr, and 50 km/hr), what is the time-
	a. 42 and 36.37	b. 44 and 38.15	c. 49 and 33.15	d. 36 and 44.18
48.		large the culture will be		a virus is reduced by fifteen percent it measures 12,500 units at the day
	a. 1512	b. 1388	c. 1680	d. 2044
49.				ata is missing. The following data as nine the missing data of the pace. d. 241.0555
	u. 21317721	J. 203.7 1.2	0.2271713	4.2.110000
50.	-	with the Ginebra worth mpounded continuously.	·	ax condition, he is qualified for a 5 ayer value?
	a. P 647,118.64	b. P 622,994.18	c. P 674,929.40	d. P 692,407.26
51.	A fan takes 2.00 s to acceleration?	reach its operating ar	ngular speed of 10.0 re	ev/s. What is the average angular
	a. 33.7 rad/s^2	b. 30.7	c. 31.4	d. 35.6
52.		ntercept reading of 1.79 i		horizontal distance between points ual to 186.26 m. Compute the stadia
	a. 107.881	b. 100.975	c. 106.203	d. 103.872
53.	Convert the following i	nto polar form: x^2 + y^2	2 - 2y = 0	
	a. $r + 2\sin\theta = 0$	b. $r - 2\sin\theta = 0$	c. $r + \sin\theta = 0$	d. $r - \sin \theta = 0$
54.	Evaluate into rectangul	lar form: (2 cis 45)(3 cis 1	135)	
	a6	b. 6	c. 0	d. infinite
55.	It is the sum of the first a. Total cost	cost and the present wo b. Capitlized cost	orth of all costs or replace c. Initial cost	ement, operation and maintenance. d. Variable cost
56.	Let $y = x^5 - 6x$. Determ	mine the slope at (0, 1).		
	a. 5	b5	c. 6	d6
57.	In a portable hospital, i patients respectively?	in how many ways that 1	.2 COVID positive patien	ts containing 7 and 5 asymptomatic

	a. 5040	b. 792	c. 1040	d. 504
58.		ngle is 130 cm. One side side. Find the length of	_	second side. The third side is 30 cm
	a. 60 cm	b. 50	c. 35	d. 55
59.	from the PC. The elevat the length of the curve	ion of the PC at station 4 is 120 meters. Compute	l + 100 is 22.56 m. The g the grade of the forwar	_
	a. 0.9 %	b. 1.77 %	c1.4%	d0.6%
60.				et day, 2 cents on the second day, 4 nat will be your total income be for
	a. P 21,553,807.44	b. P 20,216,195.93	c. P 21,918,222.40	d. P 21,474,836.47
61.		COVID 19 casualty expec rth now considering into b. P 685,217.25		
62.	An isosceles triangle has possible perimeter of the	_	ths are 17 and 22 m, re	espectively. Determine the greatest
	a. 58 m	b. 61	c. 55	d. 49
63.	Compute the dot produ	ıct A · B given the vector	s A = 2i – 3j + 3k and B =	I + 2j + 8k.
	a. 40	b. 64	c. 36	d. 48
64.	_			a message from one boat to another ine the number of messages can be
	a. 1000	b. 90	c. 720	d. 10
65.	Determine the number	of diagonals of a heptag	on.	
	a. 14	b. 28	c. 56	d. 7
66.	through a scenic rural a The improved accessib	rea. The road is expected ility is expected to resul have a useful life of 25 y	d to cost P50 million with t in additional income fi	the construction of a new highway annual use estimated at P400, 000. rom tourists of P7 million per year. est is 15%, Compute the benefit cost
	a. 0.7829	b. 0.6592	c. 0.8533	c. 0.9116
67.	Determine the value of a20 – 21i	(2 – 5i)^2. b21 – 20i	c. 20 + 21i	d. 21+20i
68.		rve is to be designed fo pavement is 0.50. Detern b. 0.5307		100 kph. The coefficient of friction uper elevation. d. 0.6422
69.	Determine the equivale	ent of cot x/csc x.		

70.	70. If the simple interest is P 6,500 with the rate of 9% for 6 years, find the principal.			orincipal.
	a. P 11,904.03	b. P 12,037.04	c. P 13,400.12	d. P 10,730.40
71.		ss of a rigid pavement w 55 MPa. (Dowels are neg	·	y of 60 kN , if the allowable tensile
	a. 316.841 mm	b. 332.912	c. 340.777	d. 350.216
72.	•			s an arrow at an angle of 30° above I the arrow land? (Use g = 9.8) d. 602
73.	week is C = 1500 + 10x profit?	+ 0.005x^2. Determine t	he number of sets shou	ufacturing and selling x tv sets per
	a. 7500	b. 6000	c. 5500	d. 10,000
74.	Find what length of can a. 88.72	vas 0.75 m. wide is requ b. 90.16	ired to make a conical te c. 83.54	ent 8m in diameter and 3m high. d. 79.22
75.		properties of the tape a		e is 0.14 N/m. The tape is supported 50N, x-section area is 1.8 mm2 and
	a. 88.2 N	b. 83.7	c. 81.9	d. 85.8

c. sin x

d. cos x

b. cot x

a. csc x SOLUTION:

BSCE QUARANTINE REVIEWER DIAGNOSTIC EXAMS HYDRAULICS AND GEOTECHNICAL ENGINEERING

1.	In its natural condition a so being completely dried in a using soil's specific gravity	an oven the mass of the	•	
	a. 0.1690	b. 0.1812	<u>c. 0.1253</u>	d. 0.1070
2.	The following reasons caus a. Pipe Rupture	,	b. Damage pipe fixture	
	c. Damage to pumps and v	alves	d. Dirty of water being	<u>drawn</u>
3.	Pick the lone statement that a. Platy structure on the sub. Organic matter is not pact. Air is not an important pd. Clay holds more water the	rface of the soil is desirarticularly beneficial to the art of soil.		he soil.
4.	In Figure 1, a 50 mm pipeli between A and B is 44.2 m		_	es into air. If the loss of head
	a. 10.65 L/s	b. 11.31	c. 15.57	d. 12.96
5.	A pipe 1 m diameter and 1 pipe is 0.005. Calculate the	_		
	a. 16.52 m	<u>b. 15.29</u>	c. 16.55	d. 12.56
6.	A soil profile shown in Figu the average degree of satu effective stress at C.			
	a. 99.14 kPa	b. 84.15	<u>c. 92.31</u>	d. 81.95
7.	These are retaining walls compared thinner in section as compared to the se		th, water or any other fil	l material. These walls are
	a. Sheet pile wallsc. Retaining walls		b. Brace Cuts d. Pile Cuts	
8.	The flow rate in a pipe is information given and $h = 4$ a. 0.00815 m ³ /s			own in Figure 3. Using the flow and no losses. d. 0.00527
9.	It is a sudden or perceptible to flooding.	e change in a river's ma	rgin, such as a change in	course or loss of banks due
	a. alluvion	b. filtration	c. sedimentation	d. alvusion
10.		was observed that failu	ure of the sample in she	ed to a liquid pressure of 20 ear occurred when the axial on. d. 24.74
				

11	 Calculate Reynolds number through a pipe of 20mm wi 	_	ty of 0.4 Ns/m2 and re	lative density of 900 Kg/m3
	a. 115.0	b. 118.4	<u>c. 112.5</u>	d. 105.7
4.0				
12	 A retaining wall 6m. high is The cohesion less soil has a 		= -	
	a. 108.078 kN	b. 115.394	c. 172.216	d. 106.339
13	. Find the position of center			-
	floats horizontally in water. a. 0.95	b. 0.85	c. 1.05	d its length 7.0 m. d. 1.65
14	. Benzene flows a 150 mm Φ			
	second.	,	,	·
	a. 471.239 L/s	b. 405.392	c. 294.472	d. 331.705
SITUATION	1: Refer to the soil stress in	Figure 4. Use $\gamma_w = 10 \text{ kN}$	/m^3	
15	. Determine the total stress of	of the soil.		
	a. 230.3 kPa	<u>b. 160.3</u>	c. 90.3	d. 70
16	. Determine the pore water (nressure		
10	a. 230.3 kPa	b. 160.3	c. 90.3	<u>d. 70</u>
47	Delegation the effect of			
17	 Determine the effective str a. 230.3 kPa 	ess. b. 160.3	<u>c. 90.3</u>	d. 70
SITUATION	2: Identify the terms as state	ed in the following ques	tions.	
18	. This is a part of the precipit during or shortly after rai		ily stored en route to	or in the stream system,
	a. Salination	b. detention storage	c. invertion	d. infiltration
10	It refers to water with salin	ity greater than that of c	ogwator.	
19	 It refers to water with salin a. Saltwater 	b. Freshwater	c. Saline	d. Brine
20	. This refers to rise in sea or o	estuary water level caus b. tsunami	ed by the passage of a lo c. gale	ow pressure area. d. seiche
	a. storm surge	D. (Suriailii	c. gale	u. seiche
	13: A strip footing in Figure 5 aving a cohesion c = 30 kN/m		-	
m below g theory of T	round level. The moist weigl enzaghi.	ht of soil above the wat	er table is 17.25 kN/m^3	3. Use general shear failure
21	. Determine the ultimate bea	aring capacity of the soil		
	<u>a. 4259 kPa</u>	b. 1408	c. 4272	d. 4225
าา	Determine the net hearing	canacity		
22	. Determine the net bearing a. 4259 kPa	b. 1408	c. 4272	<u>d. 4225</u>
23	. Determine the allowable be	earing pressure using 3 a	s FS.	

	a. 4259 kPa	<u>b. 1408</u>	c. 4272	d. 4225
/m^3. A st	N 4: A rectangular pontoon 10 teel tube weighing 34 kN is placed in the gravity for the combined mas	laced longitudinally on t	he deck. When the tube	is in a central position, the
24	4. Determine the center of gra	avity.		
	a. 1.112 m	<u>b. 1.067</u>	c. 1.108	d. 0.985
25	5. Determine the draught to t	he seawater displaced.		
	a. 0.916 m	<u>b. 0.781</u>	c. 0.579	d. 0.618
26	5. Determine the maximum d is not exceed 5°.	istance the tube may be	rolled laterally across th	ne deck if the angle of heel
	<u>a. 0.860 m</u>	b. 0.792	c. 0.616	d. 0.724
	N 5: A 400mm high open cylin is at an angular speed of 33.5		eter is filled with water a	and rotated about its
27	7. Determine the volume of w a. 5.218 L	vater remained. b. 4.079	<u>c. 4.242</u>	d. 6.219
28	3. Determine the depth of wa a. 0.24 m	ter at rest. b. 0.19	c. 0.42	d. 0.28
29	9. Determine the volume of w	ater remained in the cyl	linder if the speed is dou	ıbled.
	a. 1.157 L	b. 2.048	c. 0.912	<u>d. 1.050</u>
SITUATION	N 6: The soil has 20% gravel, 1	.0% sand, 30% silt and 40	0% clay.	
30). Determine the sand size pe	rcentage.		
	a. 12.5%	b. 50.5%	c. 37.5%	d. 40%
31	1. Determine the silt size perc	entage.		
	a. 12.5%	b. 50.5%	<u>c. 37.5%</u>	d. 40%
32	2. Classify the soil using triang	gle classification system.		
	a. sand	b. loamy sand	c. loam	<u>d. clay</u>
SITUATION 7: In the figure shown at Figure 6, the elevation of hydraulic grade line at B is 15.24 m and the Pipes BC and BD are arranged so that the flow from B divides equally, all pipes have $f = 0.02$. $Cv = 0.953$ and $Cc = 0.670$ for the orifice.				
33	 Compute the discharge of t a. 0.0565 m³/s 	he pipeline from B to re b. 0.0113	servoir C. c. 0.0650	d. 0.1675
34	4. Determine the elevation of a. 4.51 m	the end of the pipe at D b. 7.73	? c. 6.24	d. 25.87

35. What is the head that will be maintained on the 125 mm ϕ orifice at E? a. 2.44 m b. 2.83 c. 3.74 d. 2.65

SITUATION 8: In the figure shown at Figure 7, the soil has a unit weight of 16.63 kN/m 3 and undrained shear strength cu = 18.57 kN/m 2 . The slope makes an angle of 50 $^\circ$ with the horizontal. Assume stability number m = 0.164.

36. Determine the stability factor.

a. 6.10 b. 5.70

c. 6.24

d. 5.69

37. Determine the maximum depth up to which the cut could be made.

a. 5.953 m

b. 6.809

c. 5.517

d. 6.214

38. Compute the angle that the failure plane makes with the horizontal if BC = 9 m.

a. 23.04°

b. 24.83°

c. 22.03

d. 23.61°

SITUATION 9: The following data for soils A and B are as follows:

Sieve Size	Diam.	Soil A % finer	Soil B % finer
No. 4	4.760	99	23
No. 10	2.000	96	19 .
No. 40	0.420	89	8
No. 100	0.149	79	5
No. 200	0.074	70	4
Liquid limit		49	
Plastic limit	7.1	24	
From the Grai	n Size Curve, the	following were also	obtained.
D ₁₀			0.50 mm
D ₃₀ »		0.023	5.50 mm
D ₆₀	*	0.032	27.50 mm

Provide your Unified Soil Classification table. Classify the soils using UCS.

39. What is the classification of soil A?

a. CL

b. GN

c. CL

d. ML

40. What is the classification of soil B?

a. OL

h. GW

c. ML

d. GP

41. What is the coefficient of uniformity of soil B?

a. 70

b. 45

<u>c. 55</u>

d. 60

SITUATION 10: For the system show in Figure 8:

42. Find the primary consolidation settlement at $\sigma'c = 100$ kPa.

a. 162 mm

b. 98

c. 50.4

d. 6

43. Find the primary consolidation settlement at $\sigma'c = 150$ kPa.

a. 162 mm

b. 98

c 50 /

d. 6

44. Find the primary consolidation settlement at $\sigma'c = 250$ kPa.

a. 162 mm

b. 98

c 50.4

d. 6

SOLUTION 42-44:

SITUATION 11: A drum 700 mm and filled with water has a vertical pipe, 20 mm in diameter, attached to the top
as shown in Figure 9.

45. Determine the pressure head. a. 1.221 m b. 1.723 c. 1.516 d. 1.822 46. How much is the weight of water must be poured into the pipe to exert a force of 6500 N on the top of the drum? b. 5.65 a. 5.31 N c. 4.78 d. 6.81 47. The energy input to the hydrological cycle is by: a. Wind b. Water <u>c. Sun</u> d. Moon

SITUATION 12: A square plate having one of its side equal to 3 m is immersed in a water surface in a vertical position such that the two edges of the square would be horizontal in order that the center of pressure shall be 8 cm from the center of gravity.

48. How far below the water surface should the upper plate be submerged?

a. 8.000 m
b. 6.525
c. 4.955
d. 7.875

49. Determine the distance of center of pressure from the water surface.

a. 9.455 m
b. 4.588
c. 7.875
d. 10.216

50. Find the hydrostatic force on the plate.

a. 827.72 kN
b. 794.45
c. 768.23
d. 1012.19

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

BSCE QUARANTINE REVIEWER DIAGNOSTIC EXAMS STRUCTURAL ENGINEERING AND CONSTRUCTION

SITUATION 1: The section of a concrete beam is shown in Figure 1. The beam is simply supported over a span of 5.6 m. Unit weight of the concrete is 23.6 kN/m 3 . Concrete compressive strength f'c = 23.6 MPa and concrete tensile strength f'ct = 2.6 MPa. The value of b1 = 200 mm, b2 = 375 mm, h = 550 mm and D = 140 mm.

1.	1. Determine the cracking moment of the beam.					
	a. 52.181 kN m	b. 49.315	c. 47.618	c. 55.818		
2.	2. Calculate the compressive stresses in the beam due to cracking moment.					
	a. 4.106 MPa	b. 4.251	c. 4.812	d. 4.499		
3.	What additional weigh	t can the beam support v	without cracking?			
	a. 36.110 kN/m	b. 34.413	c. 38.976	d. 42.613		
SITUAT	TION 2: On the force syst	em shown in Figure 2,				
4.	Determine the resultar	nt.				
	a. 544.68 lb	b. 564.19	c. 588.23	d. 502.27		
5.	Determine the angle o	f the magnitude.				
	a. 28.25°	b. 26.44	c. 44.17	d. 21.01		
6.	Determine the momen	t of the force system.				
	a. 1779.19 ft-lb	b. 1443.36	c. 1699.85	d. 2031.14		
7.	What must be the leng	th of a 5mm φ aluminiu	m wine so that it can be	twisted through 1 complete		
	revolution without exc	eeding a shear of 42N/m	ım2. Take, G=27 GPa.			
	a. 12.16 m SOLUTION:	b. 11.88	c. 10.09	d. 13.27		
8.	8. It is a metal box installed at various locations along utility easements that contain electrical, telephone, cable television switches and connections.					
	a. Flashing	b. Drain	c. Pedestal	d. Beam		
	TION 3: For the given tru 12.5 kN acting at C.	ss on Figure 3, it is made	up of a wood 160 x 125	mm. It is subjected to a vertical		
Allowa	ble stress of wooden see	ction:				
Shear	parallel to the grain = 1.2	23 MPa				
	ongitudinal for joints = 1					
Compr	ession parallel to the gra	ain = 12.6 MPa				

9. Compute the minimum length of x.

a. 65 mm
b. 89
c. 70
d. 54

10. Compute the minimum length of y.

a. 10
b. 9
c. 11
d. 18

11. Compute the axial stress of member AC.

a. 0.751 MPa
b. 1.422
c. 1.244
d. 0.921

Compression perpendicular to the grain = 4.6 MPa

	_	ding car is at rest on an i art is held in position by	_	weight of the car and its load is 25		
12.	. Determine the reaction along the upper wheel.					
	a. 22.7 kN	b. 2.5	c. 22.65	d. 8		
13.	13. Determine the reaction along the lower wheel.					
	a. 22.7 kN	b. 2.5	c. 22.65	d. 8		
14.	14. Determine the tension in the cable.					
	a. 22.7 kN	b. 2.5	c. 22.65	d. 8		
15.	In Figure 5, determine	the determinacy of the s	structure.			
	a. 1° Indeterminate	b. Determinate	c. 2° Indeterminate	d. Unstable		
16.	16. According to Section 305 of National Building Code, A building permit issued under the provisions of th Code shall expire and become null and void if the building or work authorized therein is not commence within a period of one year from the date of such permit, or if the building or work so authorized suspended or abandoned at any time after it has been commenced, for a period of: a. 90 days b. 120 days c. 6 months d. 1 year					
17.	17. A high strength steel band saw, 20 mm wide by 0.80 mm thick, runs over pulleys 600 mm in diameter. Wha maximum flexural stress is developed? Assume E = 200 GPa.					
	a. 210.00	b. 250	c. 333.67	d. 266.67		
Beam p A = 102 d = 445	properties are as follows 260 mm^2, bf = 177 mm	n , tf = 16 mm , tw = 15 m m^4, ly = 26 x 10^6 mm	nm ,	sed distributed load of 18.5 kN/m		
10	Compute the maximum	a banding stress				
10.	Compute the maximum a. 72.918 MPa	-	c. 67.308	d. 91.331		
19.	Compute the maximum					
	a. 8.216 MPa	b. 6.216	c. 9.711	d. 10.393		
SITUAT 6.	ION 6: Given the followi	ng parameters P = 325 k	N , Allowable weld stres	s Fvw = 90 MPa as shown in Figure		
20.	Calculate the average v	vertical force per unit ler	ngth of weld (N/mm) assi	uming that $a = 0$.		
	a. 750 N/mm	b. 650	c. 325	d. 375		
21.				entric load as shown in Figure 6.		
	a. 1082 N/mm	b. 845	c. 1015	d. 865.46		
22.	Calculate the thickness a. 12 mm	of the weld is 732.5 N/r b. 24	nm. c. 9	d. 18		
SITUAT	ION 7: A truck and traile	er combination crossing a	a 12-m span has axle loa	ds of 10, 20, and 30 kN separated		

respectively by distances of 3 and 5 m.

2	23.	Determine the location	of the Resultant.				
		a. 4.25 m	b. 5.00	c. 6.00	d. 5.50		
2	24.	. Determine the maximum shear.					
		a. 60 kN	b. 30	c. 45	d. 20		
2	25.	Determine the maximu	m moment				
		a. 61.25 kN m	b. 95	c. 104.17	d. 180		
SITU	SITUATION 8: For the beam and influence diagram shown in Figure 7,						
2	26.	Determine the maximu a. 50 kN	m upward reaction at su b. 60	ipport C due to a 50 kN c c. 85	concentrated load. d. 70		
2	27.	Determine the maximu a. 45 kN	m downward reaction a b. 20	t support C due to a 50 k c. 15	N concentrated load. d. 60		
Figui	re 8				g a thickness of 12 mm as shown in oss sectional area of 929 mm^2 , Fy		
Gros Net a	s a are	ole stresses: rea tensile = 0.6Fy a tensile = 0.5Fu tress = 0.3Fu					
2	28.	Determine the tensile f	orce P based on gross ar	ea.			
		a. 181.62 kN	b. 524.40	c. 195.09	d. 376.71		
2	29.	Determine the value of a. 181.62 kN	tensile force P based on b. 524.40	net area if the tensile st c. 195.09	rength reduction coefficient is 0.85. d. 376.71		
3	30.		the tensile force P base				
		2 101 C2 LNI		(195.09			
		a. 181.62 kN	b. 524.40	0. 200.00	u. 370.71		
SITU	ATI		as shown in Figure 9, is s				
			as shown in Figure 9, is s				
		ON 10: A 150 kg plate	as shown in Figure 9, is s				
3	31.	ON 10: A 150 kg plate Determine the tension	as shown in Figure 9, is s at cable B b. 858	supported by three cable	es and is in equilibrium.		
3	31.	ON 10: A 150 kg plate Determine the tension a. 0 N	as shown in Figure 9, is s at cable B b. 858	supported by three cable	es and is in equilibrium.		
3	31. 32.	ON 10: A 150 kg plate Determine the tension a. 0 N Determine the tension	as shown in Figure 9, is s at cable B b. 858 at cable C b. 858	supported by three cable c. 1716	es and is in equilibrium. d. 1472		
3	31. 32.	ON 10: A 150 kg plate Determine the tension a. 0 N Determine the tension a. 0 N	as shown in Figure 9, is s at cable B b. 858 at cable C b. 858	supported by three cable c. 1716	es and is in equilibrium. d. 1472		
3	31. 32. 33.	Determine the tension a. 0 N A short post constructe The inner and outer dia	as shown in Figure 9, is s at cable B b. 858 at cable C b. 858 at cable D b. 858 ed from a hollow circular	c. 1716 c. 1716 c. 1716 tube of aluminum supp	d. 1472		
3	31. 32. 33.	Determine the tension a. 0 N A short post constructe The inner and outer dia shortening of the post a. 0.0008 SOLUTION:	as shown in Figure 9, is so at cable B b. 858 at cable C b. 858 at cable D b. 858 ed from a hollow circular ameters of the tube are due to the load is measu b. 0.001	c. 1716 c. 1716 c. 1716 tube of aluminum supp 9cm and =13cm, respected as 0.5 mm. Determine c. 0.0005	es and is in equilibrium. d. 1472 d. 1472 d. 1472 orts a compressive load of 250 kN . tively, and its length is 100 cm. The ne the strain in the post.		
3	31. 32. 33.	Determine the tension a. 0 N A short post constructe The inner and outer dia shortening of the post a. 0.0008 SOLUTION:	as shown in Figure 9, is s at cable B b. 858 at cable C b. 858 at cable D b. 858 ed from a hollow circular ameters of the tube are due to the load is measu	c. 1716 c. 1716 c. 1716 tube of aluminum supp 9cm and =13cm, respected as 0.5 mm. Determine c. 0.0005	es and is in equilibrium. d. 1472 d. 1472 d. 1472 orts a compressive load of 250 kN attively, and its length is 100 cm. The one the strain in the post.		

SITUATION 11: In the stress element diagram shown in Figure 11, 36. Determine the average stress. a. 15 MPa b. 30 c. 52.3 d. 67.3 37. Determine the maximum shear stress. a. 15 MPa b. 30 c. 52.3 d. 67.3 38. Determine the principal direction. Use Mohr's Circle. a. 48° b. 55° d. 53° SOLUTION: SITUATION 12: In accordance with the provisions of the 2010 NSCP, the required strength U shall be at least to the effects of the factored loads below the where the effects of the one or more loads not acting simultaneously shall be investigated:

U = 1.4D U = 1.2D + 1.6L U = 1.2D + 1.6L + 0.8W U = 1.2D + 1.0(E+L) U = 0.9D + 1.6W

Result from elastic analysis of a concrete beam yields the following values of the service moments: D = 50 kN m, L = 80, W = 60, E = 100,.

Steel protective covering is 75 mm to the centroid of the steel group. f'c = 28 MPa , fy = 415 MPa. Assume bars are to be placed in one layer only.

39. Determine the value of the factored moment that will be used in designing the member.

- a. 141 kN m
- b. 188
- c. 236
- d. 240

40. Determine the designed dimensions using maximum allowable reinforcement ratio for tension control.

- a. 300 x 450 mm
- b. 275 x 475
- c. 200 x 500
- d. 250 x 400

41. Calculate the number of 28 mm Ø to be used.

a. 2

b. 3

c. 4

d. 5

SITUATION 13: A propped beam AB is 9 m long is fixed at A and simply supported at B. Assuming EI is constant throughout the beam. If a concentrated load is 120 kN is acting vertically at 6m from the fixed end of the beam.

E = 150000 MPa and $I = 300 \times 10^6 \text{ mm}^4$.

- 42. Find the reaction at B.
 - a. 62.22 kN
- b. 120
- c. 75.22
- d. 112.7

43. Determine the moment at the fixed end at A.

- a. -154.19
- b. -160.02
- c. -95.11
- d. -88.12

44. Find the angle of rotation at B.

45. In the composite section shown in Figure 12, determine the product of moment of inertia using parallel axis theorem.						
	a. 1.96 x 10^6 mm^4	b. 1.24 x 10^6	c. 5.16 x 10^6	d. 3.20 x 10^6		
SITUATION 14: Light grade steel channel was used as a purlin of a truss. The top chord is inclined 1 V: 6 H and distance between trusses is equal to 5.5 meters. The purlin has a weight of 75 N/m and spaced at 1050 mm on the centers. The dead load including the roof materials is 700 Pa, live load of 1100 Pa and wind load of 1260 Pa. Coefficient of pressure at leeward and windward are 0.6 and 0.2 respectively. Assume all loads passes through the centroid of the section.						
Properties of C Channel Sx = 6.00 x 10^4 mm^3 , Sy = 1.10 x 10^4 mm^3 W = 75 N/mm Allowable bending stresses Fbx and Fby = 210 Mpa						
46.	_	stress , fbx for dead load				
	a. 103.95 MPa	b. 83.265	c. 122.151	d. 111.02		
47.	Calculate the bending s	stress, fby for dead load	the live load combination	on (D +L)		
	a. 103.95 MPa	b. 83.265	c. 122.151	d. 111.02		
48.				or load combination 0.75 (D + L + W)		
	a. 1.0237	b. 0.9782	c. 1.1103	d. 0.8915		
49.	This refers to the tend	ency of a solid material	to slowly move or defor	m permanently under the influence		
	a. Shrinkage	b. Creep	c. Hardness	d. Elasticity		
50.	The point where the er	nergy is released during t	the earthquake is called			
	a. Epicenter	b. Hypocenter	c. Metacenter	d. Hypercenter		
SITUAT	TION 15: In Figure 13 sho	own,				
51.	Determine the reaction	n acting on the wall.				
	a. 3871 N	b. 2500	c. 3750	d. 6970		
52.	52. Determine the reaction acting on the 500 kg block.					
	a. 3871 N	b. 2500	c. 3750	d. 6970		
53.	Determine the force P	in order to move the blo	ck.			
	a. 3871 N	b. 2500	c. 3750	d. 6970		
54.	They are well burnt res a. Coarse Aggregates c. Cinder Aggregates	idue obtained from furna	aces using coal as fuel and b. Sand d. Gravel	d are used for making lime concrete.		
SITUATION 16: In the system of cables shown in Figure 14, neglect the self weight of the cables.						
55. Determine the sag yb .						
55.	a. 1.677 m	b. 1.022	c. 1.315	d. 1.798		

c. 3.11

d. 7.57

a. 6.11°

b. 4.58°

56.	Determine the sag yd. a. 1.528 m	b. 1.347	c. 1.001	d. 1.744	
57.	Determine the tension a. 48.789 kN	at AB. b. 44.60	c. 45.05	d. 47.636	
58.	A concrete mix has a ra	tio 1:2:5 by mass. The sp	pecific gravities of the ma	aterials are as follows:	
	Cement = 3.33, Sand = 2.70, Gravel = 2.66 Cement weighted 40 kg per bag. Use 20 liters of water. Find the volume of cement solids per bag of cement.				
	a. 0.015 m^3	b. 0.0030	c. 0.012	d. 0.126	
of 15 w Assumi	rires of 5 mm diameter l	ocated 65 mm from the	bottom and 3 wires of 5	20 cm wide is prestressed by means mm diameter 25 mm from the top. ting its own weight over a span of 6	
59.	Determine the direct be	ending stress due to pres	stress.		
	a. 10 MPa	b. 5	c. 11.16	d. 9	
60	Dotorming the handing	stross due to prostross			
60.	a. 10 MPa	stress due to prestress. b. 5	c. 11.16	d. 9	
	u. 10 u		0. ==.=0		
61.	Determine the maximu	m working stress of cond	crete.		
	a. 10 MPa	b. 5	c. 11.16	d. 9	
of 2.5 r Columr 62.	n on centers supports and E and H are omitted su Compute the ultimate I a. 264.51 kN Compute the ultimate I a. 264.51 kN	slab 100 mm in thickness uch that the girder BEHK oad (kN) at E induced by b. 220 oad (kN) at H induced by b. 220	s. The superimposed dea support beams DEF at E beam DEF. (Use NSCP 2 c. 279.92 beam GHI. c. 279.92	verall depth of 600 m has a spacing ad load = 3 kPa , live load = 4.8 kPa , and GHI at H as shown in Figure 15. 2010) d. 237 d. 237 y at B and K . Use FEM = Pab^2/L^2.	
04.	a. 592.5	b. 395	c. 197.5 kN	d. 237	
SITUATION 19: A spiral column having a diameter of 550 mm is reinforced with 8 – 25 mm \emptyset vertical bars. With f'c = 28 MPa and fy = 400 MPa.					
65.	Determine the steel rat	io in percent.			
	a. 0.01	b. 0.02	c. 0.03	d. 0.04	
66.		eccentricity to the diame		87.5 mm)	
	a. 0.2477	b. 0.2617	c. 0.3409	d. 0.4107	
67.	67. Determine the value of the eccentric load Pn having the value of θ Pn/Ag = 7.5 as eccentricity factor and θ = 0.703.				
	a. 2354.67 kN	b. 2210.44	c. 2919.33	d. 3090.55	

SITUATION 20: A rectangular footing supports a square footing column concentrically. (Use NSCP 2010) Given:

Footing	dimensions = 2.0 m sq	uare and 750 mm depth			
_	dimension = 0.50 m sq	· ·			
Concrete f'c = 28 MPa , steel fy = 415 MPa					
		of steel reinforcement =	= 150 mm		
Unit we	eight of concrete = 23.5	kN/m^3			
	eight of soil = 16.6 kN/m				
	ole stresses at ultimate				
	m action, allowable she				
	way section = 1.70 MP				
68.	Determine the concent soil pressure.	trated load (kN) that the	footing can carry based o	on beam action. Apply only effective	
	a. 4770.54	b. 4819.22	c. 10800	d. 11700	
69		ated load based on two		d. 11700	
05.	a. 7830 kN	b. 3366	c. 4825.81	d. 810	
70				infactored axial load can the footing	
70.		2 m above the footing.	105 Ki a, acteriline the t	initiactorea axiar load carrene rooting	
	a. 536.7 kN	b. 810	c. 10800	d. 4825.81	
	u. 550.7 KI	0.010	c. 10000	d. 4023.01	
71.	71. A pulley requires 200 Nm torque to get it rotating in the direction as shown. The angle of wrap is π radians, and μ s = 0.25. What is the minimum horizontal force F required to create enough tension in the belt so that it can rotate the pulley as shown in Figure 16?				
	a. 800 N	b. 670.6	c. 1470.6	d. 2141	
72.	72. A flanged bolt coupling consists of ten 20-mm-diameter bolts spaced evenly around a bolt circle 400 mm in diameter. Determine the torque capacity of the coupling if the allowable shearing stress in the bolts is 40 MPa.				
	a. 80 kN m	b. 25.13	c. 40	d. 63.5	
MPa. Tl	ION 21: A W 420 x 85 S ne beam has a span of 8 ies of W 420 x 85	•	ined with a uniformly di	stributed super imposed load of 23	
-	39 mm^2	bf = 180 mm	tf = 18 mm		
tw = 11		d = 420 mm	lx = 310 x 10^6 mm^4		
11	111111	u – 420 mm	IX - 310 X 10 0 111111 4		
73. Compute the bending stress in MPa.					
	a. 95.336 MPa	b. 86.11	c. 20.635	d. 23.856	
74.	Compute the web shea				
	a. 95.336 MPa	b. 86.11	c. 20.635	d. 23.856	
75	Determine the horizon		20.000		
, 5.	a. 95.336 MPa	b. 86.11	c. 20.635	d. 23.856	
	20.000 4		20.000		

Figure 1

Figure 2

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16